Ichthyological Research

, Volume 47, Issue 1, pp 43–50 | Cite as

Phylogenetic relationships of the Japanese minnows,Pseudorasbora (Cyprinidae), as inferred from mitochondrial 16S rRNA gene sequences

  • Katsutoshi Watanabe
  • Kei'ichiroh Iguchi
  • Kazumi Hosoya
  • Mutsumi Nishida


The phylogenetic relationships among threePseudorasbora fishes (Cyprinidae, Sarcocheiichthyinae) occurring in Japan (P. parva, P. pumila pumila andP. pumila subsp. sensu Nakamura [1963]) were inferred from nucleotide sequences of the mitochondrial 16S rRNA gene. The sequences. of 1240 bp, were determined and compared for 22 specimens from 2–8 populations for each taxon, with a singlePungtungia herzi specimen as an outgroup. A total of 171 sites (13.8%) were variable among the specimens, but only 0–2 sites within each population. The phylogenetic relationships estimated by neighbor-joining, maximum-parsimony and maximum-likelihood methods confirmed a sister relationship between the twoP. pumila subspecies, with a high level of confidence. However, their genetic distinction from each other (4.1±0.4SD % sequence difference on average) was at a level similar to that between them andP. parva (5.9±0.5%). The geographic distribution of the twoP. pumila subspecies, which are separated by the Fossa Magna region, suggests that the genetic divergence of the two subspecies originated from a vicariant process separating the freshwater ichthyofaunas of eastern and western Honshu.Pseudorasbora parva populations were divided into two genetic groups (1.8±0.2% sequence difference), one group comprising continental and part of the Japanese populations, and the other the remaining Japanese populations. This suggests that at least two genetically divergent lineages had been originally distributed in Japan, but a strong possibility remains that the present situation has resulted from artificial transplantation.

Key words

Pseudorasbora Cyprinidae mitochondrial DNA 16S rRNA molecular phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bargelloni, L., P. A. Ritchie, T. Patarnello, B. Battaglia, D. M. Lambert and A. Meyer. 1994. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (Suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol. Biol. Evol., 11: 854–863.PubMedGoogle Scholar
  2. Cheng, Q. and B. Zheng, eds. 1987. Systematic synopsis of Chinese fishes. Science Press, Beijing. 1458 pp. (In Chinese.)Google Scholar
  3. Goldman, N. 1993. Statistical tests of models of DNA substitution. J. Mol. Evol., 22: 182–198.CrossRefGoogle Scholar
  4. Environmental Agency of Japan. 1991. Threatened species of Japan—Red Data Book, Vertebrates. Japan Wildlife Research Center, Tokyo, 331 pp. (In Japanese.)Google Scholar
  5. Eschmeyer, W. N. et al. 1998. Catalog of fishes. Special publication No. 1, Center for Biodiversity Research and Information, California Academy of Sciences. San Francisco. 2905 pp.Google Scholar
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.CrossRefGoogle Scholar
  7. Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22: 160–174.CrossRefGoogle Scholar
  8. Hosoya, K. 1993. Cyprinidae and Cobitidae. Pages 212–235 and 1258–1261in T. Nakabo, ed. Fishes of Japan with pictorial keys to the species. Tokai Univ. Press, Tokyo. (In Japanese.)Google Scholar
  9. Kawamura, K. and K. Hosoya. 1997. Discovery of an endangered cyprinid,Pseudorasbora pumila subsp. sensu Nakamura (1969), from the Miya River, system Mie. Japan. J. Ichthyol., 44: 57–60. (In Japanese with English abstract.)Google Scholar
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.CrossRefGoogle Scholar
  11. Kishino, H. and M. Hasegawa. 1989. Evaluation of the maximum likelihood estiamte of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. J. Mol. Evol., 29: 170–179.CrossRefGoogle Scholar
  12. Kitaura, J., K. Wada and M. Nishida. 1998. Molecular phylogeny and evolution of unique mud-using territorial behavior in ocypodid crabs (Crustacea: Brachyura: Ocypodidae). Mol. Biol. Evol., 15: 626–637.CrossRefGoogle Scholar
  13. Kumar, S., K. Tamura and M. Nei. 1993.MEGA: Molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park. 130 pp.Google Scholar
  14. Lu, Y.-L., P.-Q Luo and Y.-Y. Chen. 1977. Gobioninae. Pages 439–549in X. Wu, ed. The cyprinid fishes of China, Volume 2. Science Press, Peking. (In Chinese.)Google Scholar
  15. Meyer, A., Biermann, C. H. and G. Orti. 1993. The phylogenetic position of the zebrafish (Danio rerio) a model system in developmental biology: an invitation to the comparative method Proc. R. Soc. Lond. B, 252: 231–236.CrossRefGoogle Scholar
  16. Miya, M. and M. Nishida, 1996. Molecular phylogenetic perspective on the evolution of the, deep-sea fish genusCyclothone (Stomiiformes: Gonostomatidae). Ichthyol. Res., 43: 375–398.CrossRefGoogle Scholar
  17. Miya, M. and M. Nishida. 1998. Molecular phylogeny and evolution of the deep-sea fish genusSternoptyx. Mol. Phylogenet. Evol., 10: 11–22.CrossRefGoogle Scholar
  18. Moritz, C. 1994. Defining evolutionarily significant units for conservation. Trends in Ecology and Evolution, 9: 373–375.CrossRefGoogle Scholar
  19. Nakamura, M. 1963. Keys to the freshwater fishes of Japan fully illustrated in colors. Hokuryukan, Tokyo. 258 pp. (In Japanese.)Google Scholar
  20. Nakamura, M. 1969. Nippon no koi-ka gyorui (Cyprinid fishes of Japan). Research Institute of Natural Resources, Tokyo. 455 pp. (In Japanese.)Google Scholar
  21. Nishimura, S. 1980. Nihon-kai no seiritsu (Formation of the Sea of Japan). 2nd ed., Tsujiji-Shokan, Tokyo. 230 pp. (In Japanese.)Google Scholar
  22. Page, R. D. M. and E. C. Holmes. 1998. Molecular Evolution: a phylogenetic approach Blackwell Science, Oxford. v+346 pp.Google Scholar
  23. Simons, A. M. and R. L. Mayden. 1998. Phylogenetic relationships of the Western North American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Mol. Phylogenet. Evol. 9: 308–329.CrossRefGoogle Scholar
  24. Swofford, D. L. 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  25. Tatsukawa, K. 1989.Ctenopharyngodon andHypophthalmichthys, Pages 282–293in H. Kawanabe and N. Mizuno, eds. Nippon no tansuigyo (Japanese freshwater fishes). Yama-Kei Publ., Tokyo. (In Japanese.)Google Scholar
  26. Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution, 37: 221–244.CrossRefGoogle Scholar
  27. Uchiyama, R. 1987. Morphology and ecology ofPseudorasbora pumila subsp. Tansuigyo, 13: 74–84. (In Japanese.)Google Scholar
  28. Uchiyama, R., 1989.Pseudorasbora. Pages 302–309in H. Kawanabe and M. Mizuno, eds. Nippon no tansuigyo (Japanese freshwater fishes). Yama-Kei Publ., Tokyo. (In Japanese.)Google Scholar
  29. Watanabe, K. 1998. Parsimony analysis of the distribution pattern of Japanese primary freshwater fishes, and its application to the distribution of the bagrid catfishes. Ichthyol. Res., 45: 259–270.CrossRefGoogle Scholar

Copyright information

© The Ichthyological Society of Japan 2000

Authors and Affiliations

  • Katsutoshi Watanabe
    • 1
  • Kei'ichiroh Iguchi
    • 2
  • Kazumi Hosoya
    • 2
  • Mutsumi Nishida
    • 1
  1. 1.Department of Marine BioscienceFukui Prefectural UniversityFukuiJapan
  2. 2.National Research Institute of Fisheries ScienceNaganoJapan

Personalised recommendations