Advertisement

Journal of Phase Equilibria

, Volume 15, Issue 3, pp 310–316 | Cite as

The gallium-iron system: Enthalpy of formation in liquid state

  • R. Haddad
  • M. Gaune-Escard
  • J. P. Bros
Article

Abstract

Through the use of a very high-temperature, automated calorimeter, the enthalpy of formation, ΔfH=f(XFe), of the Fe-Ga liquid system was measured in the temperature and molar fraction ranges 0<XFe< 0.591 and 1373 <T< 1573 whereT is inK. The molar enthalpies of formation of these liquid alloys are negative with an extremum point atXFe = 0.55 and ΔfH = -5.9 ± 0.6 kj/mol (all results are referred to the liquid state). From measurements performed on the Ga-rich mole fraction side, the limiting partial molar enthalpy was deduced Δhm0 (FeL in GaL) = -2 ± 0.2 kJ/mol. These results were compared with those obtained previously for the two similar systems, Ni-Ga and Co-Ga. Moreover a point of the liquidus line was obtained (XFe = 0.48 atT = 1466 K).

Keywords

Enthalpy Liquid Alloy Molar Enthalpy Liquid System Equilibrium Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1.
    D. El Allam, Thèse de l'Université deProvence, Marseille, France (1989).Google Scholar
  2. 2.
    R. Haddad, Thèse de l'Université deProvence, Marseille, France (1993).Google Scholar
  3. 3.
    D. El Allam, M. Gaune-Escard, J.P. Bros, and E. Hayer,Metall. Trans. B, 23,39(1992).CrossRefGoogle Scholar
  4. 4.
    D. El Allam, E. Hayer, M. Gaune-Escard, and J.P. Bros,Metall. Trans., to be published.Google Scholar
  5. 5.
    E. Hayer, K.L. Komarek, M. Gaune-Escard, and J.P. Bros,J. Non- Cryst. Solids, 156-158,379 (1993).CrossRefGoogle Scholar
  6. 6.
    H. Okamoto,Bull. Alloy Phase Diagrams, 11(6), 576–581 (1990).CrossRefGoogle Scholar
  7. 7.
    C. Dasarathy and W. Hume-Rothery,Proc. R. Soc. (London)A, 286, 141 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    S. Koster and T. Godecke,Z.Metallkd,68(10),661 (1977).Google Scholar
  9. 9.
    B. Predel and W. Vogelbein,Thermochim. Acta, 13(2), 133(1975).CrossRefGoogle Scholar
  10. 10.
    V.I. Nizhenko and L.I. Floka,Russ. J. Phys. Chenu; TR: Th. Fiz. Khim.,49(2),251(1975).Google Scholar
  11. 11.
    O. Kubaschewski and C.B. Alcock,Metallurgical Thermochemis- try, 5th ed., Pergamon Press, Oxford, New York (1979).Google Scholar
  12. 12.
    E. Hayer, F. Gerhinger, K.L. Komarek, M. Gaune-Escard, and J.P. Bros,Z Metallkd., 80,186 (1989).Google Scholar
  13. 13.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley,Selected Values of the Thermodynamic Properties of Elements, American Society for Metals, Metals Park, OH 44073 (1973).Google Scholar
  14. 14.
    F.R. deBoer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, “Cohesion in Metals: Transition Metal Alloys,≓ Volume 1, North-Holland Publishing, Amsterdam (1988).Google Scholar
  15. 15.
    A. Pasturel, Thèse de Doctorat d'Etatès Sciences, Université Scien- tifique et Médicale de Grenoble (1983).Google Scholar

Copyright information

© ASM International 1994

Authors and Affiliations

  • R. Haddad
    • 1
  • M. Gaune-Escard
    • 1
  • J. P. Bros
    • 1
  1. 1.IUSTI-CNRS UA 1168Université de Provence, Centre de Saint JérÔmeFrance

Personalised recommendations