Journal of Phase Equilibria

, 14:583 | Cite as

High-temperature phase equilibria in Cr-Cr3Si two-phase alloys

  • J- A. Sutlijfand
  • B. P. Bewlay
  • H. A. Lipsitt
Section I: Basic and Applied Research


Phase equilibria in two-phase Cr-Cr3Si alloys have been investigated using metallography, XRD, and electron microprobe analysis. Cr-Si alloys with compositions of up to 15.0% Si were directionally solidified using cold crucible Czochralski crystal growth and equilibrated chemically at either 1200,1400, or 1600 °C. Measured Si concentrations of the Cr and the Cr3Si phases were found to be significantly lower than those given by the most recent assessment of the Cr-Si phase diagram, particularly at temperatures above 1200 °C. This explains why the volume fraction of Cr3Si in the directionally solidified eutectic is lower than that predicted by the assessed phase diagram. X-ray lattice parameter data for both Cr and Cr3Si are also reported.


Directional Solidification Eutectic Temperature Eutectic Composition Measured Composition Interlamellar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Cited References

  1. 1.
    A.B.Gokhale and G.J. Abbaschian,Bull of Alloy Phase Diagrams, 8,474–484(1987).CrossRefGoogle Scholar
  2. 2.
    T.B. Massalski, PR. Subramanian, H. Okamoto, and L. Kacprzak,Binary Alloy Phase Diagrams, 2nd, ed., Vol. 1,2, and 3, ASM International, Materials Park, OH (1990).Google Scholar
  3. 3.
    R. Kieffer, F. Benesovsky, and H. Schroth,Z Metallkd., 44, AZI-Ml (1953).Google Scholar
  4. 4.
    H. Nowotny, H. Schroth, R. Kieffer, and F. Benesovsky,Monatsh. Chem., 84,579–584 (1953).CrossRefGoogle Scholar
  5. 5.
    Y.A. Chang,Trans. Metall. AIME, 242,1509–1515 (1968).Google Scholar
  6. 6.
    Yu.A. Kocherzhinsky,Therm. Anal., Proc. 3rd ICTA DAVOS, 1, 549–559(1971).Google Scholar
  7. 7.
    BP. Bewlay, J.A. Sutliff, K.-M. Chang, and M.R. Jackson,Processing and Fabrication of Advanced Materials for High Temperature Applications, V.A. Ravi and T.S. Srivatsan, Ed., TMS Publications, Warrendale, PA, 213–224 (1992).Google Scholar
  8. 8.
    K.-M. Chang, B.P. Bewlay, J.A. Sutliff, and M.R. Jackson,J. Met, 44(6), 59–63 (1992).Google Scholar
  9. 9.
    HJ. Goldschmidt and J.A. Brand,J. Less-Common Met., 3,34–43 (1961).CrossRefGoogle Scholar
  10. 10.
    T.M. Pyatkova, V.l. Surikov, A.K. Shtolts, V.L. Zagrayazhsky, and P.V. Geld,Izv. Akad. Nauk SSSR, Neorg. Mater., 7(10), 1755 (1971).Google Scholar
  11. 11.
    M. Jurisch and G. Behr,Acta Phys. Acad. Sci. Hung., 47(1-3), 201 (1979).CrossRefGoogle Scholar
  12. 12.
    J.W. Newkirk and J.A. Sago,Mat. Res. Soc. Symp., 194,183–189 (1990).CrossRefGoogle Scholar

Copyright information

© ASM International 1993

Authors and Affiliations

  • J- A. Sutlijfand
    • 1
  • B. P. Bewlay
    • 1
  • H. A. Lipsitt
    • 2
  1. 1.Corporate Research and Development CenterGeneral Electric CompanySchenectady
  2. 2.Department of Mechanical and Materials EngineeringWright State UniversityDayton

Personalised recommendations