Advertisement

Recent progress in the modeling of high-temperature creep and its application to alloy development

  • 217 Accesses

  • 4 Citations

Abstract

Recent progress in the understanding of high-temperature creep of alloys is discussed in the context of theoretical modeling and its application to alloy development. Emphasis is placed upon those engineering alloys specifically designed for high-temperature applications, such as precipitation and dispersion-strengthened (DS) alloys and metal-matrix composites (MMCs). Currently, these theoretical models use one of two different approaches, (a) a phenomenological approach, which is used in such models as those based on the internal stress concept, and those based on empirical creep equations; and (b) micromechanical models that are based on dislocation mechanisms and the interactions of dislocations with solute atoms, second-phase particles, and other reinforcements such as fibers. All these theoretical models have a common goal, namely, the understanding of high-temperature strengthening mechanisms and the relationship between high-temperature strength and the micromechanical mechanisms during high-temperature plastic deformation of the alloys. These theoretical studies can provide information that is useful in alloy design and processing, such as the selection of alloy chemistry, and the optimization of phase microstructural features (e.g., reinforcement amount, shape, size, and distribution; matrix grain size; and matrix and reinforcement interfaces) by optimization of processing methods.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 408

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    O. D. Sherby and P. M. Burke, Mechanical Behavior of Crystalline Solids at Elevated Temperature,Prog. Mater Sci, Vol 13 (No. 7), 1968, p 323–390

  2. 2.

    E. N. da C. Andrade, On the Viscous Flow in Metals, and Allied Phenomena,Proc. R. Soc. (London) A, Vol 84 (No. 567), 1911, p 1–12

  3. 3.

    E. N. da C. Andrade, The Flow in Metals Under Large Constant Stresses,Proc. R. Soc. (London) A, Vol 90 (No. 619), 1914, p 329–342

  4. 4.

    F. C. Monkman and N. J. Grant, An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests,Proc. ASTM, vol 56,1958, p 593–620

  5. 5.

    F. Dobes and K. Milicka, The Relationship Between Minimum Creep Rate and Time to Fracture,Mer. Sci., Vol 10 (No. 11), 1976, p 382–384

  6. 6.

    C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez, The Relationship Between Transient and Steady State Creep in AISI 304 Stainless Steel,Acta Metall. Mater, Vol 39 (No. 7), 1976, p 1651–1656

  7. 7.

    The Superalloys, C.T. Sims and W.C. Hagel, Ed., John Wiley & Sons, 1972

  8. 8.

    Superalloys II: High Temperature Materials for Aerospace and Industrial Power, C.T. Sims, N.S. Stoloff, and W.C. Hagel, Ed., John Wiley & Sons, 1987

  9. 9.

    T.M. Pollock and A.S. Argon, Creep Resistance of CMSX-3 Nickel-Base Superalloy Single Crystals,Acta Metall. Mater, Vol 40 (No. 1), 1992, p 1–30

  10. 10.

    Powder Metallurgy, W. Leszynski, Ed., Interscience, 1961

  11. 11.

    G. H. Gessinger,Powder Metallurgy of Superalloys, Butterworth, 1984

  12. 12.

    M. F. Ashby, A First Report on Sintering Diagram,Acta Metall., Vol 22 (No. 3), 1974, p 275–289

  13. 13.

    F.B. Swinkels and M.F. Ashby, A Second Report on Sintering Diagram,Acta Metall, Vol 29 (No. 2), 1981, p 259–281

  14. 14.

    E. Arzt, M.F. Ashby, and K.E. Easterling, Practical Applications of Hot-Isostatic Pressing Diagrams: Four Case Studies,Metall. Trans. A, Vol 14 (No. 2), 1983, p 211–221

  15. 15.

    A.C.F. Cocks, The Structure of Constitutive Laws for the Sintering of Fine Grained Materials,Acta Metall. Mater, Vol 42 (No. 7), 1994, p 2191–2210

  16. 16.

    J.H. Gittus,Creep, Viscoelasticity and Creep Fracture in Solids, John Wiley & Sons, 1975

  17. 17.

    J. P Poirier,Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, 1985

  18. 18.

    F. Garofalo,Fundamentals of Creep and Creep-Rupture in Metals, MacMillan, 1965

  19. 19.

    R.W Evans and B. Wilshire,Creep of Metals and Alloys, Institute of Metals, 1985

  20. 20.

    T.G. Langdon, Grain Boundary Deformation Processes,Deformation of Ceramic Materials, R.C. Bradt and R.E. Tressler, Ed., Plenum Publishing, 1975, p 101–126

  21. 21.

    A.G. Evans and T.G. Langdon, Structural Ceramics,Prog. Mater Sci., Vol 2 (No. 3/4), 1976, p 171–441

  22. 22.

    H.J. Frost and M.F. Ashby,Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982

  23. 23.

    W.R. Cannon and T.G. Langdon, Creep of Ceramics, Part I Mechanical Characteristics,J. Mater Sci., Vol 18 (No. 1), 1983, p 1–50

  24. 24.

    W.R. Cannon and T.G. Langdon, Creep of Ceramics, Part II An Examination of Flow Mechanism,J. Mater Sci., Vol 23 (No. 1), 1988, p 1–20

  25. 25.

    A. Kelly and N.H. Macmillan,Strong Solids, 3rd ed., Clarendon, 1986, p 223–231

  26. 26.

    Materials and Coatings to Resist High Temperature Corrosion, D.R. Holmes and A. Rahmel, Ed., Applied Science, 1978

  27. 27.

    R.W.K. Honeycombe,The Plastic Deformation of Metals, 2nd ed., Edward Arnold, 1984, p 393–394

  28. 28.

    F. A. Mohamed and T. G. Langdon, The Transition from Dislocation Climb to Viscous Glide in Creep of Solid Solution Alloys,Acta Metall, Vol 22 (No. 6), 1974, p 779–788

  29. 29.

    Q. P. Kong and Y. Li, On the Climb Process of Extended Dislocations During High Temperature Creep,Phys. Stat. Solidi, A, Vol 126 (No. 1), 1991, p 129–134

  30. 30.

    Q.P Kong and Y. Li, Investigation of the Climb of Extended Dislocations During High Temperature Creep,Philos. Mag. A, Vol 68 (No. 1), 1993, p 113–119

  31. 31.

    W. Ostwald, Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Kör per, (On the general isomers of red and yellow mercury oxide and the surface tension of solid bodies) Z.Phys. Chem., Vol 34 (No. 4), 1900, p 495–503 (in German)

  32. 32.

    I. M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation From Supersaturation Solid Solutions,J. Phys. Chem. Solids, Vol 19 (No. 1/2), p 35-50

  33. 33.

    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), [Theory of aging of precipitates through disolution (Ostwald-Ripening)],Z.Elektrochem., Vol 65 (No. 7/8), 1961, p 581–591 (in German)

  34. 34.

    J.W. Martin and R.D. Doherty, Precipitate Coarsening: “Ostwald Ripening,”Stability of Microstructure in Metallic Systems, Cambridge University Press, 1976, p 173–244

  35. 35.

    H. Gleiter, Microstructure,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 649–712

  36. 36.

    Deformation, Processing, and Structure, G. Krauss, Ed., American Society for Metals, 1984

  37. 37.

    Flow and Fracture at Elevated Temperatures, R. Raj, Ed., American Society for Metals, 1985

  38. 38.

    Proc. 1st Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1981

  39. 39.

    Proc. 2nd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1984

  40. 40.

    Proc. 3rd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1987

  41. 41.

    Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1990

  42. 42.

    Proc. 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, 1993

  43. 43.

    A.H. Cottrell, Creep,Dislocations and Plastic Flow in Crystals, Oxford University Press, 1953, p 195–215

  44. 44.

    S. Takeuchi and A.S. Argon, Steady-State Creep of Single-Phase Crystalline Matter at High Temperature,J. Mater Sci., Vol 11 (No. 7), 1976, p 1542–1566

  45. 45.

    L. Shi and D.O. Northwood, Dislocation Network Models for Recovery Creep Deformation,J. Mater Sci., Vol 28 (No. 22), 1993, p 5963–5974

  46. 46.

    D.O. Northwood and I.O. Smith, Experimental Techniques for Probing the Micromechanisms of Creep: A Review,Met. Forum, Vol 8 (No. 4), 1985, p 237–249

  47. 47.

    A.H. Cottrell and M.A. Jaswon, Distribution of Solute Atoms Round a Slow Dislocation,Proc. R. Soc. (London) A, Vol 199 (No. 1056), 1949, p 104–114

  48. 48.

    J. Friedel,Dislocations, Pergamon Press, 1964, Ch XI, p 303–319; Hardness of a Crystal Containing Uniformly Distributed Impurities or Precipitates, Ch XIV p 368–384; Formation and Motion of Impurity Clouds, Ch XVI, p 405–414

  49. 49.

    F.A. Mohamed and T.G. Langdon, Creep Behavior of Ni-W Solid Solutions (Communications),Metall. Trans. A, Vol 6 (No. 4), 1975, p 927–928

  50. 50.

    F.A. Mohamed and T.G. Langdon, Creep Behavior of Ceramic Solid-Solution Alloys (Discussion and Notes),J. Am. Ceram. Soc, Vol 58 (No. 11–12), 1975, p 533–534

  51. 51.

    S. Takeuchi and A.S. Argon, Steady-State Creep of Alloys Due to Viscous Motion of Dislocations,Acta Metall., Vol 24 (No. 10), 1976, p 883–889

  52. 52.

    S. Takeuchi and A.S. Argon, Glide and Climb Resistance to the Motion of an Edge Dislocation Due to Dragging a Cottrell Atmosphere,Philos. Mag. A, Vol 40 (No. 1), 1979, p 65–75

  53. 53.

    R. Fuentes-Sasmlaniego, Theoretical Studies of Diffusional Processes in Solids Under Pressure, Ph.D. thesis, Stanford University, Stanford, CA, 1979

  54. 54.

    J.P. Hirth and J. Lothe, Dislocation—Point-Defect Interactions at Finite Temperatures,Theory of Dislocations, 2nd ed., Part 3, John Wiley & Sons, 1982, p 485–694

  55. 55.

    G.A. Henshall and A.K. Miller, Simplifications and Improvements in Unified Constitutive Equations for Creep and Plasticity—I. Equations Development,Acta Metall. Matee, Vol 38 (No. 11), 1990, p2101–2115

  56. 56.

    G.A. Henshall and A.K. Miller, Simplifications and Improvements in Unified Constitutive Equations for Creep and Plasticity—II. Behavior and Capabilities of the Model,Acta Metall. Mater, Vol 38 (No. 11), 1990, p 2117–2128

  57. 57.

    J. Weertman and J.R. Weertman, Mechanical Properties, Strongly Temperature-Dependent,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 1309–1340

  58. 58.

    J.E. Dorn, The Spectrum of Activation Energies for Creep,Creep and Recovery, American Society for Metals, 1957, p 255–283

  59. 59.

    D.A. Prokoshkin and E.V Vasil’eva, Temperature Dependence of Diffusion Rate of Metals,Dokl. Akad. Nauk SSSR, Vol 177 (No. 5, 1967, p 1069–1071

  60. 60.

    J.C.M. Li, Kinetics and Dynamics in Dislocation Plasticity,Dislocation Dynamics, A.R. Rosenfield, G.T. Hahn, A.L. Bernent, Jr., and R.I. Jaffe, Ed., McGraw-Hill, 1968, p 87–116

  61. 61.

    J. Weertman, Dislocation Climb Theory of Steady-State Creep,Trans. ASM, Vol 61 (No. 4), 1968, p 681–694

  62. 62.

    A.K. Mukherjee, J.E. Bird, and J.E. Dorn, Experimental Correlations for High-Temperature Creep,Trans. ASM, Vol 62 (No. 1), 1969, p 155–179

  63. 63.

    H.E. Evans and G. Knowles, AModel of Creep in Pure Materials,Acta Metall., Vol 25 (No. 8), 1977, p 963–975

  64. 64.

    H.E. Evans and G. Knowles, Dislocation Creep in Non-Metallic Materials,Acta Metall., Vol 26 (No. 1), 1978, p 141–145

  65. 65.

    O.D. Sherby and J. Weertman, Diffusion-Controlled Dislocation Creep: ADefense,Acta Metall., Vol 27 (No. 3), 1979, p 387–400

  66. 66.

    K. Milicka, Constant Structure Creep in Metals After Stress Reduction in Steady State Stage,Acta Metall. Mater, Vol 41 (No. 4), 1993, p 1163–1172

  67. 67.

    R.F. Feynman, R.B. Leighton, and M. Sands, The Principles of Statistical Mechanics,The Feynman Lectures on Physics, Vol 1, Addison-Wesley, 1963, p40-l-to 40-10

  68. 68.

    A.S. Krausz and H. Eyring, Deformation in Creep and in Creep Recovery,Deformation Kinetics, John Wiley & Sons, 1975, p 180–225

  69. 69.

    U.F. Kocks, A.S. Argon, and M.E Ashby, Thermodynamics and Kinetics of Slip,Prog. Matei Sci., Vol 19,1975, p 1–288

  70. 70.

    F.H. Norton, Discussion of Results,The Creep of Steel at High Temperatures, McGraw-Hill, 1929, p 67–70

  71. 71.

    J.E. Bird, A.K. Mukherjee, and J.E. Dorn, Correlations Between High-Temperature Creep Behavior and Structure,Quantitative Relation Between Properties and Microstructures, D.G. Brandon and A. Rosen, Ed., Israel University Press, 1969, p 255–342

  72. 72.

    J. Weertman, Steady-State Creep Through Dislocation Climb,J. Appl. Phys., Vol 28 (No. 3), 1957, p 362–364

  73. 73.

    J. Weertman, High Temperature Creep Produced by Dislocation Motion,Rate Processes in Plastic Deformation of Materials, J.C.M. Li and A.K. Mukherjee, Ed., American Society for Metals, 1975, p 315–336

  74. 74.

    J. Weertman, Steady-State Creep of Crystals,J. Appl. Phys., Vol 28 (No. 10), 1957, p 1185–1189

  75. 75.

    R. Chang, Dislocation Theories of the High-Temperature Creep of Crystalline Solids,The Physics and Chemistry of Ceramics, C. Klingsberg, Ed., Gordon and Breach Science Publishers, 1963, p 275–285

  76. 76.

    F.R.N. Nabarro, Steady-State Diffusional Creep,Philos. Mag., Vol 16 (No. 140), 1967, p 231–237

  77. 77.

    C.R. Barrett and W.D. Nix, AModel for Steady State Creep Based on the Motion of Jogged Screw Dislocations,Acta Metall., Vol 13 (No. 12), 1965, p 1247–1258

  78. 78.

    L.I. Ivanov and VA. Yanushkevich, High-Temperature Mechanism of Steady-State Creep in B.C.C. Metals,Fiz. Metal. Metalloved., Vol 17 (No. 1), 1964, p 112–117

  79. 79.

    W. Blum, Role of Dislocation Annihilation During Steady-State Deformation,Phys. Stat. Solidi B, Vol 45 (No. 2), p 561-571

  80. 80.

    R. Lagneborg, Development and Refinement of the Recovery-Creep Theory,Met. Sci. J., Vol 3 (No. 9), 1969, p 161–168

  81. 81.

    R. Lagneborg, A Modified Recovery-Creep Model and Its Evaluation,Met. Sci. J., Vol 6 (No. 7), 1972, p 127–133

  82. 82.

    P. Öström and R. Lagneborg, A Recovery-Athermal Glide Creep Model,J. Eng. Mater Tech. (Trans. ASME Series H), Vol 98 (No. 2), 1976, p 114–124

  83. 83.

    P Öström and R. Lagneborg, A Dislocation Link Length Model for Creep,Res Mechanica, Vol 1 (No. 1), 1980, p 59–79

  84. 84.

    J.H. Gittus, Development of a Theoretical Equation for Steady-State Dislocation Creep and Comparison with Data,Acta Metall., Vol 22 (No. 6), 1974, p 789–791

  85. 85.

    J.H. Gittus, Theoretical Equation for Steady State Dislocation Creep: Effect of Solute Drag,Acta Metall., Vol 22 (No. 9), 1974, p 1179–1181

  86. 86.

    A.J. Ardell and M.A. Przystupa, Dislocation Link-Length Statistics and Elevated Temperature Deformation of Crystals,Mech. Mater, Vol 3 (No. 4), 1984, p 319–332

  87. 87.

    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Plastic Deformation of Crystals,Phys Stat. Solidi A, Vol 137 (No. 1), 1993, p 75–85

  88. 88.

    F.R.N. Nabarro, Deformation of Crystals by the Motion of Single Ions,Report of a Conference on Strength of Solids, The Phys. Soc, London, 1948, p 75–90

  89. 89.

    C. Herring, Diffusional Viscosity of a Polycrystalline Solid,J. Appl. Phys., Vol 21 (No. 5), 1950, p 437–445

  90. 90.

    R.L. Coble, AModel for Boundary Diffusion Controlled Creep in Polycrystalline Materials,J. Appl. Phys., Vol 34 (No. 6), 1963, p 1679–1682

  91. 91.

    F.W. Crossman and M.F. Ashby, The Non-Uniform Flow of Poly-crystals by Grain-Boundary Sliding Accommodated by Power-Law Creep,Acta Metall., Vol 23 (No. 4), 1975, p 425–440

  92. 92.

    E. Orowan, The Creep of Metals,J. West Scotland Iron Steel Inst., Vol 54, 1946/1947, p 45–96

  93. 93.

    T.G. Langdon, Grain Boundary Sliding as a Deformation Mechanism During Creep,Philos. Mag., Vol 22 (No. 178), 1970, p 689–700

  94. 94.

    R.C. Gifkins, The Grain-Size Dependence of Creep Rate in Recovery Creep,J. Aust. Inst. Met., Vol 18 (No. 3), 1973, p 137–145

  95. 95.

    D.J. Dingley and D. McLean, Components of the Flow Stress of Iron,Acta Metall., Vol 15 (No. 5), 1967, p 885–901

  96. 96.

    A. Odén, E. Lind, and R. Lagneborg, Dislocation Distributions During Creep and Recovery of a 20%Cr-35%Ni Steel at 700 °C,Proc. of a Meeting on Creep Strength in Steel and High Temperature Alloys, Iron and Steel Institute, 1970, p 60-66

  97. 97.

    M.R. Staker and D.L. Holt, The Dislocation Cell Size and Dislocation Density in Copper Deformed at Temperatures Between 25 and 700 °C,Acta Metall, Vol 20 (No. 4), 1972, p 569–579

  98. 98.

    J.B. Bilde-Sörensen, Dislocation Link Length Distribution in Creep-Deformed Magnesium Oxide,Acta Metall., Vol 21 (No. 11), 1973, p 1495–1501

  99. 99.

    L.E. Murr and D. Kuhlmann-Wilsdorf, Experimental and Theoretical Observations on the Relationship Between Dislocation Cell Size, Dislocation Density, Residual Hardness, Peak Pressure and Pulse Duration in Shock-Loaded Nickel,Acta Metall., Vol 26 (No. 5), 1978, p 847–857

  100. 100.

    J.D. Parker and B. Wilshire, Rate-Controlling Processes During Creep of Super-Purity Aluminium,Philos. Mag., Vol 41 (No. 5), 1980, p 665–680

  101. 101.

    F.R. Castro-Fernández and C.M. Sellars, Relationship Between Room-Temperature Proof Stress, Dislocation Density, and Subgrain Size,Philos. Mag. A, Vol 60 (No. 4), 1989, p 487–506

  102. 102.

    P. Lin, S.S. Lee, and A.J. Ardell, Scaling Characteristics of Dislocation Link Length Distributions Generated During the Creep of Crystals,Acta Metall., Vol 37 (No. 2), 1989, p 739–748

  103. 103.

    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Evolution of F.C.C. Deformation Structures in Polyslip,Acta Metall. Mater, Vol 40 (No. 2), 1992, p 205–219

  104. 104.

    B. Wang, F. Sun, Q. Meng, and W. Xu, An Approach to Mathematical Modeling of Dislocation Link Length Distribution in Metal,Ada Metall. Sin. A, Vol 28 (No. 3), 1992, p 100–103

  105. 105.

    S.O. Ojediran and O. Ajaja, The Bailey-Orowan Equation,J. Mater Sci., Vol 23 (No. 11), 1988, p 4037–4040

  106. 106.

    L. Shi and D.O. Northwood, Creep of an AISI 310 Type Stainless Steel and Its Numerical Simulation Using the Öström-Lagneborg Creep Model,Acta Metall. Mater, Vol 41 (No. 12), 1993, p 3393–3400

  107. 107.

    L. Shi and D.O. Northwood, Strain-Hardening and Recovery During the Creep of Polycrystalline Magnesium,Acta Metall. Mater, Vol 42 (No. 3), 1994, p 871–877

  108. 108.

    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Constant Strain Rate Deformation,Phys. Stat. Solidi A, Vol 140(No. 1), 1993, p 87–95

  109. 109.

    L. Shi and D.O. Northwood, On Dislocation Link Length Statistics for Strain Hardening and Recovery During Elevated Temperature Plastic Deformation,Fourth LEDS Conference, Winnipeg, Manitoba, 1995

  110. 110.

    D. Kuhlmann-Wilsdorf and L. Shi, Theory of Workhardening Stages, unpublished research, University of Virginia, 1994

  111. 111.

    A.H. Cottrell and R.J. Stokes, Effects of Temperature on the Plastic Properties of Aluminium Crystals,Proc. R. Soc. (London) A, Vol 233 (No. 112), 1955, p 17–32

  112. 112.

    J. Weertman and J.R. Weertman, Mechanical Properties, Mildly Temperature-Dependent,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North-Holland Physics, 1983, p 1259–1307

  113. 113.

    G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical,Proc. R. Soc. (London) A, Vol 145 (No. 855), 1934, p 362–387

  114. 114.

    G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part II.—Comparison with Observations,Proc. R. Soc. (London) A, Vol 145 (No. 855), 1934, p 388–404

  115. 115.

    D. Kuhlmann-Wilsdorf, A New Theory of Workhardening,Trans. Metall. Soc. AIME, Vol 224 (No. 10), 1962, p 1047–1061

  116. 116.

    D. Kuhlmann-Wilsdorf, Unified Theory of State II and III of Workhardening in Pure FCC Metal Crystals,Workhardening, J.P. Hirth and J. Weertman, Ed., Gordon and Breach Science Publishers, 1968, p 97–132

  117. 117.

    D. Kuhlmann-Wilsdorf, Recent Process in Understanding of Pure Metal and Alloy Hardening,Work Hardening in Tension and Fatigue, A.W Thompson, Ed., AIME, 1977, p 1–43

  118. 118.

    D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures,Mater Sci. Eng. A, Vol 113 (No. 7), 1989, p 1–41

  119. 119.

    W.R. Cannon, The Contribution of Grain Boundary Sliding to Axial Strain During Diffusion Creep,Philos. Mag., Vol 25 (No. 6), 1972, p 1489–1497

  120. 120.

    I.M. Lifshitz, On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies,Sov. Phys. JETP, Vol 17 (No. 4), p 909-920

  121. 121.

    W.A. Rachinger, Relative Grain Translation in the Plastic Flow of Aluminium,J. Inst. Met., Vol 81 (No. 1), 1952/1953, p 33–41

  122. 122.

    J. Bardeen and C. Herring, Diffusion in Alloys and the Kirkendall Effect,Imperfections in Nearly Perfect Crystals, W. Shockely, J.H. Hollomon, R. Maurer, and F. Seitz, John Wiley & Sons, 1952, p 261–288

  123. 123.

    F.V Lenel and G.S. Ansell, ATheory of Dispersion Strengthening,Powder Metallurgy, W. Leszynski, Ed., Interscience, p 267–307

  124. 124.

    A.H. Clauer and B.A. Wilcox, Structure Sensitive Creep Behavior of Crystalline Solids,Inelastic Behaviour of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, Ed., McGraw-Hill, 1970, p 301–325

  125. 125.

    F.A. Mohamed, K.-T. Park, and E.J. Lavernia, Creep Behavior of Discontinuous SiC-Al Composites,Mater Sci. Eng. A, Vol 150 (No. 1), 1992, p 21–35

  126. 126.

    P.W. Davies, G. Nelmes, K.R. Williams, and B. Wilshire, Stress-Change Experiments During High-Temperature Creep of Copper, Iron, and Zinc,Met. Sci. J., Vol 7 (No. 5), 1973, p 87–92

  127. 127.

    K.R. Williams and B. Wilshire, On the Stress- and Temperature-Dependence of Creep of Nimonic 80A,Mer. Sci. X, Vol 7 (No. 9), 1973, p 176–179

  128. 128.

    J.D. Parker and B. Wilshire, The Effect of a Dispersion of Cobalt Particles on High-Temperature Creep of Copper,Met. Sei. J., Vol 9 (No. 5), 1975, p 248–252

  129. 129.

    S. Purushothaman and J.K. Tien, Role of Back Stress in the Creep Behavior of Particle Strengthened Alloys,Acta Metall., Vol 26 (No. 4), 1978, p 519–528

  130. 130.

    D. Lazarus, Diffusion in Metals,Solid State Phys., Vol 10, 1960, p71–126

  131. 131.

    P.G. Shewmon,Diffusion in Solids, McGraw-Hill, 1963

  132. 132.

    N.L. Peterson, Diffusion in Metals,Solid State Phys., Vol 22, 1968

  133. 133.

    CRC Handbook of Chemistry and Physics, 74th ed., D.R. Lide, Ed., CRC Press, 1993–1994

  134. 134.

    G.S. Ansell and J. Weertman, Creep of Dispersion-Hardened Aluminum Alloy,Trans. AIME, Vol 215 (No. 10), 1959, p 838–843

  135. 135.

    R. Lagneborg, Recovery Creep in Materials Hardened by a Second Phase,J. Mater. Sci., Vol 3 (No. 11), 1968, p 596–602

  136. 136.

    J.L. Strudel, Mechanical Properties of Multiphase Alloys,Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, Ed., North Holland Physics, 1983, p 1411–1486

  137. 137.

    W.C. Oliver and W.D. Nix, High Temperature Deformation of Oxide Dispersion Strengthened Al and Al-Mg Solid Solutions,Acta Metall., Vol 30 (No. 7), 1982, p 1335–1347

  138. 138.

    E. Orowan, Dislocations and Mechanical Properties,Dislocations in Metals, M. Cohn, Ed., AIME, 1954, p 69

  139. 139.

    U.F. Kocks, AStatistical Theory of Flow Stress and Work-Hardening,Philos. Mag., Vol 13 (No. 123), 1966, p 541–566

  140. 140.

    R.S.W. Shewfelt and L.M. Brown, High-Temperature Strength of Dispersion-Hardened Single Crystals, II. Theory,Philos. Mag., Vol 35 (No. 4), 1977, p 945–962

  141. 141.

    E. Arzt and M.F. Ashby, Threshold Stresses in Materials Containing Dispersed Particles,Scr Metall., Vol 16 (No. 11), 1982, p 1285–1290

  142. 142.

    E. Arzt and D.S. Wilkinson, Threshold Stresses for Dislocation Climb Over Hard Particles: The Effect of an Attractive Interaction,Acta Metall., Vol 34 (No. 10), 1986, p 1893–1898

  143. 143.

    E. Arzt and J. Rösier, The Kinetics of Dislocation Climb Over Hard Particles—II. Effects of an Attractive Particle-Dislocation Interaction,Acta Metall., Vol 36 (No. 4), 1988, p 1053–1060

  144. 144.

    J. Rosier and E. Arzt, A New Model-Based Creep Equation for Dispersion Strengthened Materials,Acta Metall. Mater, Vol 38 (No. 4), 1990, p 671–683

  145. 145.

    A. Orlová and J. Cadek, On Rösier and Arzt’s New Model of Creep in Dispersion Strengthened Alloys,Acta Metall. Mater, Vol 40 (No. 8), 1992, p 1865–1871

  146. 146.

    G.M. Pharr and W.D. Nix, A Comparison of the Orowan Stress with the Threshold Stress for Creep for Ni-20Cr-2ThO2 Single Crystals,Scr Metall.,Vol 10 (No. 11), 1976, p 1007–1010

  147. 147.

    R. Lagneborg, Bypassing of Dislocations Past Particles by a Climb Mechanism,Scr. Metall., Vol 7 (No. 6), 1973, p 605–614

  148. 148.

    W. Blum and B. Reppich, Creep of Particle-Strengthened Alloys,Creep Behaviour of Crystalline Solids, B. Wilshire and R.W. Evans, Ed., Pineridge Press, 1985, p 83–135

  149. 149.

    J.H. Hausselt and W.D. Nix, A Model for High Temperature Deformation of Dispersion Strengthened Metals Based on Substructural Observations in Ni-20Cr-2ThO2,Acta Metall., Vol 25 (No. 12), 1977, p 1491–1502

  150. 150.

    D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton, Edge Dislocation-Circular Inclusion Interactions at Elevated Temperatures,Acta Metall., Vol 31 (No. 12), 1983, p 2151–2159

  151. 151.

    D.R. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, and W.D. Nix, Diffusionally Modified Dislocation-Particle Elastic Interactions,Acta Metall., Vol 32 (No. 7), 1984, p 1079–1088

  152. 152.

    V.C. Nardone and J.K. Tien, Pinning of Dislocation on the Departure Side of Strengthening Dispersoids,Scr Metall., Vol 17 (No. 4), 1983, p 467–470

  153. 153.

    J.H. Schröder and E. Arzt, Weak Beam Studies of Dislocation/Dispersoid Interaction in an ODS Superalloy,Scr Metall., Vol 19 (No. 9), 1985, p 1129–1134

  154. 154.

    R.S. Herrik, J.R. Weertman, R. Petkovic-Luton, and M.J. Luton, Dislocation/Particle Interactions in an Oxide Dispersion Strengthened Alloy,Scr Metall., Vol 22 (No. 12), 1988, p 1879–1884

  155. 155.

    A. Orlová, K. Kucharová, J. Brezina, J. Krejcí, and J. Cadek, High Temperature Creep in an Al4C3 Dispersion Strengthened Aluminium Alloy in Tension and Compression,Scr Metall. Mater, Vol 29 (No. 1), 1993, p 63–68

  156. 156.

    G. Schoek,Dislocations in Solids, Vol 3, F.R.N. Nabarro, Ed., North-Holland Physics, 1980, p.63–163

  157. 157.

    S.T. Mileiko, Steady State Creep of a Composite Material with Short Fibres,J. Mater Sci., Vol 5 (No. 3), 1970, p 254–261

  158. 158.

    D. McLean, Viscous Flow of Aligned Composites,J. Mater Sci., Vol 7 (No. 1), 1972, p 98–104

  159. 159.

    A. Kelly and K.N. Street, Creep of Discontinuous Fibre Composites, I. Experimental Behaviour of Lead-Phosphor Bronze,Proc. R. Soc. (London) A, Vol 328 (No. 1573), 1972, p 267–282

  160. 160.

    A. Kelly and K.N. Street, Creep of Discontinuous Fibre Composites, II. Theory for the Steady-State,Proc. R. Soc. (London) A, Vol 328 (No. 1573), 1972, p 283–293

  161. 161.

    H. Lilholt, Relations Between Matrix and Composite Creep Behaviour,Prvc. RisφInt. Symp. on Metallurgy and Materials Science, 3rd (Fatigue and Creep of Composites Materials), H. Lilholt and R. Talreja, Ed., Risφ) National Laboratory, 1982, p 63–76

  162. 162.

    V.C. Nardone and K.M. Prewo, On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites,Scr Metall., Vol 20 (No. 1), 1986, p 43–48

  163. 163.

    M. Taya and H. Lilholt, Modeling of the Second and Third Stage Creep Rates of Aligned Short Fiber Metal Matrix Composites,Advances in Composite Materials and Structures, S.S. Wang and Y. Rajapakse, Ed., ASME, 1986, p 21–27

  164. 164.

    T. Morimoto, T. Yamaoko, H. Lilholt, and M. Taya, Second Stage Creep of SiC Whisker/6061 Aluminum Composite at 573 K,J. Eng. Mater Tech. (Trans. ASME, Series H), Vol 110 (No. 2), 1988, p 70–76

  165. 165.

    T.L. Dragone and W.D. Nix, Geometrie Factors Affecting the Internal Stress Distribution and High Temperature Creep Rate of Discontinuous Fiber Reinforced Metals,Acta Metall. Mater, Vol 38 (No. 10), 1990, p 1941–1953

  166. 166.

    M. Tanaka, Prediction of Creep Deformation in Ductile Two-Phase Alloys by a Continuum Mechanics Model,J. Mater Sci., Vol 28 (No. 10), 1993, p 2750–2756

  167. 167.

    G. González-Doncel and O.D. Sherby, High Temperature Creep Behavior of Metal Matrix Aluminum-SiC Composites,Acta Metall. Mater, Vol 41 (No. 10), 1993, p 2797–2805

  168. 168.

    S. Purushothaman and J.K. Tien, Role of Back Stress in the Creep Behavior of Particle Strengthened Alloys,Acta Metall., Vol 26 (No. 4), 1978, p 519–528

  169. 169.

    S. Purushothaman, O. Ajaja, and J.K. Tien, On the Concept of Back Stress in Particle Strengthened Alloys,Strength of Metals and Alloys, Vol 1, P. Haasen, V. Gerold, and G. Kostorz, Ed., Pergamon, 1979, p 251–257

  170. 170.

    O. Ajaja, T.E. Howson, S. Purushothaman, and J.K. Tien, The Role of the Alloy Matrix in the Creep Behavior of Particle-Strengthened Alloys.Mater Sci. Eng., Vol 44 (No. 2), 1980,p 165–172

  171. 171.

    J.S. Benjamin, Dispersion Strengthened Superalloys by Mechanical and Alloying,Metall. Trans., Vol 1 (No. 10), 1970, p 2943–2951

  172. 172.

    J.S. Benjamin and M.J. Bomford, Dispersion Strengthened Aluminum Made by Mechanical Alloying,Metall. Trans. A, Vol 8 (No. 8), 1977, p 1301–1305

  173. 173.

    P.S. Gilman and J.S. Benjamin, Mechanical Alloying,Ann. Rev. Mater Sci., Vol 13, 1983, p 279–300

  174. 174.

    N.S. Stoloff, Fundamentals of Strengthening,The Superalloys, C.T. Sims and W.C. Hagel, Ed., Wiley, 1972, p 79–111

  175. 175.

    P. Haasen, Mechanical Properties of Solid Solutions,Fundamental Aspects of Structural Alloy Design, R.I. Jaffee and B.A. Wilcox, Ed., Plenum Publishing, 1975, p 3–25

  176. 176.

    Alloy and Structural Design, J.K. Tien and G.S. Ansell, Ed., Academic Press, 1976

  177. 177.

    L. Shi, J. Chen, and D.O. Northwood, Inclusion Control in a 16Mn Steel Using a Combined Rare Earth and Calcium Treatment,J. Mater Eng., Vol 13 (No. 4), 1991, p 273–279

  178. 178.

    L. Shi, J. Chen, and D.O. Northwood, Effect of Rare Earth and Calcium Treatments on the Mechanical, Physical, and Electrochemical Properties of a 16Mn Steel,J. Maten Eng. Perform., Vol 1 (No. 1), 1992, p 21–28

  179. 179.

    L. Shi and D.O. Northwood, Effect of Rare-Earth and Calcium Treatment on the Banded Microstructure and Fracture Properties of a 16 Mn Steel,J. Mater Sci., Vol 27 (No. 19), 1992, p 5343–5347

  180. 180.

    L. Shi, D.O. Northwood, and Z. Cao, Alloy Design and Microstructure of a Biomedical Co-Cr Alloy,J. Mater Sci., Vol 28 (No. 5), 1993, p 1312–1316

  181. 181.

    L. Shi, D.O. Northwood, and Z. Cao, The Properties of a Wrought Biomédical Cobalt-Chromium Alloy,J. Mater Sci., Vol 29 (No. 5), 1994, p 1233–1238

  182. 182.

    Intermetallic Compounds, J.H. Westbrook, Ed., John Wiley & Sons, 1967

  183. 183.

    Alloying, J.L. Walter, M.R. Jackson, and C.T. Sims, Ed., American Society for Metals, 1980

  184. 184.

    R. Raj and M.F. Ashby, On Grain Boundary Sliding and Diffusional Creep,Metall. Trans., Vol 2 (No. 4), 1971, p 1113–1127

  185. 185.

    M.F. Ashby and R.A. Verrall, Diffusion-Accommodated Flow and Superplasticity.Acta Metall., Vol 21 (No. 2), 1973, p 149–163

  186. 186.

    R.C. Gifkins, Grain-Boundary Sliding and Its Accommodation During Creep and Superplasticity,Metall. Trans. A, Vol 7 (No. 8), 1976, p 1225–1232

  187. 187.

    A.K. Ghosh and R. Raj, Grain Size Distribution Effects in Superplasticity,Acta Metall., Vol 29 (No. 4), 1981, p 607–616

  188. 188.

    R. Raj, Creep in Polycrystalline Aggregates by Matter Transport Through a Liquid Phase,J. Geophys. Res., Vol 87 (No. B6), 1982, p 4731–4739

  189. 189.

    G.M. Pharr and M.F. Ashby, On Creep Enhanced by a Liquid Phase,Acta Metall., Vol 31 (No. 1), 1983, p 129–138

  190. 190.

    D.R. Clarke, High-Temperature Deformation of a Polycrystalline Alumina Containing an Intergranular Glass Phase,J. Mater Sci., Vol 20 (No. 4), 1985, p 1321–1332

  191. 191.

    B.L. Vaandrager and G.M. Pharr, Compressive Creep of Copper Containing a Liquid Bismuth Intergranular Phase,Acta Metall., Vol 37 (No. 4), 1989, p 1057–1066

  192. 192.

    J.R. Dryden, D. Kucerovsky, D.S. Wilkinson, and D.F. Watt, Creep Deformation Due to a Viscous Grain Boundary Phase,Acta Metall., Vol 37 (No. 7), 1989, p 2007–2015

  193. 193.

    R.C. Gifkins, Factors Influencing Deformation of Superplastic Alloys. Part I: Grain-Size Distribution,Mater Forum, Vol 13 (No. 4), 1989, p 279–287

  194. 194.

    R.C. Gifkins, Factors Influencing Deformation of Superplastic Alloys. Part II: Grain-Size Boundary Sliding,Mater Forum, Vol 15(No. 1), 1991, p 82–94

  195. 195.

    L. Shi and D.O. Northwood, A“Thase” Approach to Superplastic Deformation,Acta Metall. Mater, Vol 40 (No. 8), 1992, p 2069–2074

  196. 196.

    M.M. Chadwick, D.S. Wilkinson, and J.R. Dryden, Creep Due to a Non-Newtonian Grain Boundary Phase,J. Am. Ceram. Soc., Vol 75 (No. 9), 1992, p 2327–2334

  197. 197.

    M.M. Chadwick, R.S. Jupp, and D.S. Wilkinson, Creep Behavior of a Sintered Silicon Nitride,J. Am. Ceram. Soc., Vol 76 (No. 2), 1993, p 385–396

  198. 198.

    J.W. Martin, Micromechanisms at Elevated Temperatures,Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, 1980, p 151–192

  199. 199.

    H.E. Evans,Mechanisms of Creep Fracture, Elsevier, 1984

  200. 200.

    H.G.F. Wilsdorf, Dispersion Strengthening of Aluminum Alloys,Dispersion Strengthened Aluminum Alloys, Y-W. Kim and W. Griffith, Ed., TMS, 1988, p 3–29

  201. 201.

    J.A. Hawk, P.K. Mirchandani, R.C. Benn, and H.G.F. Wilsdorf, Evaluation of the Elevated Temperature Strength and Microstructural Stability of Dispersion Strengthened MA Aluminum Alloys,Dispersion Strengthened Aluminum Alloys, Y-W. Kim and W. Griffith, Ed., TMS, 1988, p 517–537

  202. 202.

    H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf, Work Softening and Hall-Petch Hardening in Extruded Mechanically Alloyed Alloys,Mater Sci. Eng. A, Vol 164 (No. 1/2), 1993, p 1–14

  203. 203.

    W. Schneider and H. Mughrabi, Investigation of the Creep and Rupture Behaviour of the Single-Crystal Nickel-Base Superalloy CMSX-4 Between 800 °C and 1100 °C,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 209–220

  204. 204.

    T. Yokokawa, K. Ohno, H. Harada, S. Nakazawa, T. Yamagata, and M. Yamazaki, Towards an Intelligent Computer Program for the Design of Ni-Base Superalloys,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 245–254

  205. 205.

    H. Harada, T. Yamagata, T. Yokokawa, K. Ohno, and M. Yamazaki, Computer Analysis on Microstructure and Property of Nickel-Base Single Crystal Superalloys,Proc. of 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, Ed., The Inst. of Materials, 1993, p 255–264

Download references

Author information

Additional information

L. Shi, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22901, USA

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, L., Northwood, D.O. Recent progress in the modeling of high-temperature creep and its application to alloy development. JMEP 4, 196–211 (1995). https://doi.org/10.1007/BF02664114

Download citation

Keywords

  • alloy development
  • creep
  • dislocations
  • mechanisms