Metallurgical and Materials Transactions B

, Volume 3, Issue 11, pp 3009–3023 | Cite as

High temperature creep cavitation mechanisms in a continuously cast high purity copper

  • A. Rukwied
Mechanical Behaviour


Continuously cast high purity copper was used to study intergranular high temperature creep fracture mechanisms. With the help of an internal marker system due to impurity segregation, grain boundary sliding, GBS, was found to have occurred to a similar extent on cavitated and uncavitated boundaries. To explain this phenomenon a void nucleation model involving small nonwetting shearable particles is suggested. Metallographic observations and the apparent activation energy derived from fracture time data indicate the operation of the vacancy condensation mechanism at the lower temperatures and higher stresses. At the higher temperatures and lower stresses void growth is enhanced by GBS. This cavitation mechanism obtains strong support from measurements of the distribution of voids on grain boundaries as a function of the boundary angle with respect to the tensile direction. Computer analysis of these distributions, in terms of a model which properly accounts for the distribution of potential nuclei, yields bimodal curves exhibiting peaks at grain boundaries oriented for high shear stress (peak I), and for high normal stress (peak II). A phenomenological equation is proposed for the dependence of peak I on test conditions. Peak II is thought to be caused by nucleation by local GBS and growth by vacancy condensation under locally enhanced normal stress.


Metallurgical Transaction Cavitation Void Growth Void Formation Void Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. N. Greenwood, D. R. Miller, and J. W. Suiter:ActaMet., 1954, vol. 2, p. 250.Google Scholar
  2. 2.
    A.H. Cottrell:Fracture, B. Averbachet ai, eds., p. 20, Wiley and Technology Press, New York, 1959.Google Scholar
  3. 3.
    R.C. Gifkins:Acta Met., 1956, vol. 4, p. 98.CrossRefGoogle Scholar
  4. 4.
    E.S. Machlin:AIME Trans., 1956, vol. 206, p. 106.Google Scholar
  5. 5.
    C. W. Chen and E. S. Machlin:Acta Met., 1956, vol. 4, p. 655.CrossRefGoogle Scholar
  6. 6.
    D. McLean:J. Aust. Inst. Metals, 1963, vol. 8, p. 45.Google Scholar
  7. 7.
    J. O. Stiegler, K. Farrell, B. T. M. Loh, and H. E. McCoy:Trans. ASM, 1967, vol. 60, p.494.Google Scholar
  8. 8.
    A. E. B. Presland and R. I. Hutchinson:5th Inter. Conf. for Electron Micro-scopy, p. 432, Academic Press, 1962.Google Scholar
  9. 9.
    C.F. Tipper:Metallurgia, 1948-49, vol. 39, p. 133.Google Scholar
  10. 10.
    R. Resnick and L. L. Seigle:AIME Trans., 1957, vol. 209, p. 87.Google Scholar
  11. 11.
    K.E. Puttig:Phil. Mag., 1959, vol. 4, p. 964.CrossRefGoogle Scholar
  12. 12.
    R. W. Balluffi and L. L. Seigle:Acta Met., 1957, vol. 5, p. 449.CrossRefGoogle Scholar
  13. 13.
    D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, p. 673.CrossRefGoogle Scholar
  14. 14.
    V. Speight and J.E. Harris:Met. Sci. J., 1967, vol. l,p. 83.Google Scholar
  15. 15.
    G.W. Greenwood:Phil. Mag., 1963, vol. 8, p. 707.CrossRefGoogle Scholar
  16. 16.
    G.W. Greenwood:Phil. Mag., 1969, vol. 19, p. 423.CrossRefGoogle Scholar
  17. 17.
    Y. Ishida and D. McLean:Met. Sci. J., 1967, vol. 1, p. 171.CrossRefGoogle Scholar
  18. 18.
    D. McLean:Phil. Mag., 1971, vol. 23, p. 467.CrossRefGoogle Scholar
  19. 19.
    G.W. Greenwood:Proceedings of a Conference on Interfaces, R. C. Gifkins, ed., p. 223, Butterworths, Melbourne, Australia, 1969.Google Scholar
  20. 20.
    D. A. Woodford and R. M. Goldhoff:Mater. Sci. Eng., 1969-70, vol. 5, p. 303.CrossRefGoogle Scholar
  21. 21.
    N.J. Grant:Fracture, H. Liebowitz, ed., vol. III, p. 483, Academic Press, New York and London, 1971.Google Scholar
  22. 22.
    P. W. Davies and B. Wilshire:J. Inst. Metals, 1961-62, vol. 90, p. 470.Google Scholar
  23. 23.
    R. A. Scriven and H. D. Williams:Trans. TMS-AIME, 1965, vol. 233, p. 1593.Google Scholar
  24. 24.
    P. W. Davies, K. R. Williams, and B. Wilshire:Phil. Mag., 1968, vol. 18, p. 197.CrossRefGoogle Scholar
  25. 25.
    P. W. Davies and K. R. Williams: Met. Sci. J., 1969, vol. 3, p. 220.Google Scholar
  26. 26.
    A. Gittins and H. D. Williams:Phil. Mag., 1967, vol. 16, p. 849.CrossRefGoogle Scholar
  27. 27.
    A. Gittins and J.A. Williams:ScriptaMet., 1969, vol. 3, p. 209.CrossRefGoogle Scholar
  28. 28.
    D.M. R. Taplin:Phil. Mag, 1969, vol. 20, p. 1079.CrossRefGoogle Scholar
  29. 29.
    B. Wilshire:ScriptaMet, 1970, vol. 4, p. 361.CrossRefGoogle Scholar
  30. 30.
    A. Rukwied and D. B. Ballard:Met. Trans., 1972, vol. 3, pp. 2999–3008.CrossRefGoogle Scholar
  31. 31.
    A. Rukwied, A. W. Ruff, and W. A. Willard:Met. Trans., 1971, vol. 2, p. 2105.CrossRefGoogle Scholar
  32. 32.
    A. Rukwied and W. A. Willard: National Bureau of Standards, Washington, D. C, unpublished research, 1971.Google Scholar
  33. 33.
    T. R. Ratcliffe and G. W. Greenwood:Phil. Mag., 1965, vol. 12, p. 59.CrossRefGoogle Scholar
  34. 34.
    G. Richardson, E. Schnabel, and H.-P. Stüwe:Metall, 1969, vol. 23, p. 11390.Google Scholar
  35. 35.
    R. C. Boettner and W. D. Robertson:Trans. TMS-AIME, 1961, vol. 221, p. 613.Google Scholar
  36. 36.
    J. E. Harris:Trans. TMS-AIME, 1965, vol. 233, p. 1509.Google Scholar
  37. 37.
    Y. Ishida and M. Henderson Brown:Acta Met, 1967, vol. 15, p. 857.CrossRefGoogle Scholar
  38. 38.
    H. Gleiter, E. Hornbogen, and G. Bäro:Acta Met, 1968, vol. 16, p. 1053.CrossRefGoogle Scholar
  39. 39.
    G. Bäro, H. Gleiter, and E. Hornbogen:Mater. Sci. Eng, 1968-69, vol. 3, p. 92.CrossRefGoogle Scholar
  40. 40.
    E.D. Hondros:Proc. of a Conf. on Interfaces, R. C. Gifkins, ed., p. 77, Butter-worths, Melbourne, Australia, 1969.Google Scholar
  41. 41.
    E. Orowan:Proc. Roy. Soc. Lond., 1970, vol. A316, p. 473.CrossRefGoogle Scholar
  42. 42.
    H. R. Tipler and D. McLean:Met. Sci. J., 1970, vol. 4, p. 103.CrossRefGoogle Scholar
  43. 43.
    R. C. Gifkins and K. U. Snowden:Trans. TMS-AME, 1967, vol. 239, p. 910.Google Scholar
  44. 44.
    R. C. Gifkins, A. Gittins, R. L. Bell, and T. G. Langdon:J. Mater. Sci., 1968, vol. 3, p. 306.CrossRefGoogle Scholar
  45. 45.
    R.M. N. Pelloux:Trans. ASM, 1964, vol. 57, p. 511.Google Scholar
  46. 46.
    H. C. Chang and N. F. Grant:AIME Trans., 1956, vol. 206, pp. 544,1241.Google Scholar
  47. 47.
    R. N.Stevens:Met. Rev., 1966, vol. 11, p. 129.CrossRefGoogle Scholar
  48. 48.
    P. R. Strutt, A. M. Lewis, and R. C. Gifkins:J. Inst. Metals, 1964-65, vol. 93, p.71.Google Scholar
  49. 49.
    R. L. Bell and T. G. Langdon:J. Mater. Sci., 1967, vol. 2, p. 313.CrossRefGoogle Scholar
  50. 50.
    A. Gittins and R. C. Gifkins:J. Aust. Inst. Metals, 1969, vol. 14, p. 177.Google Scholar
  51. 51.
    F. GarofaloFundamentals of Creep and Creep Rupture in Metals, The Mac-Millan Co., New York, 1965.Google Scholar
  52. 52.
    R. W. Cahn:XI e Colloque de Metallurge, p. 55, Saclay, France, 1968.Google Scholar
  53. 53.
    C. R. Barrett and O. D. Sherby:Trans. TMS-AIME, 1964, vol. 230, p. 1322.Google Scholar
  54. 54.
    R. Raj and M. F. Ashby:Met. Trans., 1971,vol. 2, p. 1113.CrossRefGoogle Scholar
  55. 55.
    M. F. Ashby, R. Raj, and R. C. Gifkins:Scripta Met., 1970, vol. 4, p. 737.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • A. Rukwied
    • 1
  1. 1.AEG-TelefunkenBereich Forschung und EntwicklungFrankurt(Main)-NiederradGermany

Personalised recommendations