Advertisement

Metallurgical and Materials Transactions B

, Volume 3, Issue 11, pp 2905–2909 | Cite as

Hydrogen in β transformed Ti-6Al-4V

  • G. F. Pittinato
  • W. D. Hanna
Physical Chemistry

Abstract

The internal reactions associated with hydrogen absorbed at ambient temperature by Ti-6A1-4V having a transformedβ microstructure were determined by using X-ray diffraction analysis. Below 650 ppm, the absorbed hydrogen was concentrated primarily in theβ phase causing an increase in the d(200) spacing and considerable X-ray line broadening. The a phase, however, was not significantly affected by the absorbed hydrogen showing no change in the d(1120) and d(1012) spacings and only a finite amount of line broadening. At approximately 650 ppm H, hydride precipitation began at thea-β interface. With increasing hydrogen content, theβ phase d(200) spacing continued to increase, the (200) X-ray line broadening reached a limiting value, and massive hydrides were formed. The data indicates that low concentrations of hydrogen absorbed by a-β titanium alloys can be detected by examining the X-ray line profile of theβ phase.

Keywords

Hydride Hydrogen Content Metallurgical Transaction Volume Titanium Hydride Hydride Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Pittinato:Trans. ASM, 1969, vol. 62, p. 410.Google Scholar
  2. 2.
    G. F. Pittinato:Met. Trans., 1972, vol. 3, p. 235.CrossRefGoogle Scholar
  3. 3.
    R. J. Walter and W. T. Chandler:Effects of High Pressure on Metals at Ambient Temperature, NASA Report Contract No. NAS8-19, February 1969.Google Scholar
  4. 4.
    F. W. Jones:Proc. Roy. Soc, London, 1938, vol. 166A, p. 16.CrossRefGoogle Scholar
  5. 5.
    L. Alexander:J. Appl. Phys., 1954, vol. 25, p. 155.CrossRefGoogle Scholar
  6. 6.
    G. F. Pittinato and S. F. Frederick:Trans. TMS-AIME, 1969, vol. 245, p. 2299.Google Scholar
  7. 7.
    A. J. Hatch:Trans. TMS-AIME, 1965, vol. 233, p. 44.Google Scholar
  8. 8.
    W. D. Hanna and S. F. Frederick: McDonnell Douglas Astronautics Company, Huntington Beach, California, Unpublished Research, 1967.Google Scholar
  9. 9.
    B. L. Averbach, M. F. Comerford, and M. B. Bever:Trans. TMS-AIME, 1959, vol. 215, p. 682.Google Scholar
  10. 10.
    A. J. Williams, R. W. Cahn, and C. S. Barrett:ActaMet., 1954, vol. 2, p. 117.Google Scholar
  11. 11.
    J. B. Newkirk: Minutes of Conference on Crystallography of Titanium and its Alloys, New York University, June 27, 1952.Google Scholar
  12. 12.
    L. D. Jaffe:AIME Trans., 1956, vol. 206, p. 861.Google Scholar
  13. 13.
    T. R. Gibbs and H. W. Kruschwitz:J. Amer. Chem. Soc, 1950, vol. 72, p. 5365.CrossRefGoogle Scholar
  14. 14.
    G. F. Pittinato:Deformation Modes of Ti-6Al-4V Under Biaxial Stress at 20°K, Report DAC 62132, McDonnell Douglas Astronautics Company, February 1969.Google Scholar
  15. 15.
    M. J. Blackburn:Trans. ASM, 1966, vol. 59, p. 694.Google Scholar
  16. 16.
    W. A. Tiner, C. B. Gilpin, S. K. Asumaa, and T. L. Mackay:Trans. ASM, 1968, vol. 61, p. 195.Google Scholar
  17. 17.
    O. J. Huber, J. E. Gates, A. P. Young, M. Pobeskin, and P. D. Frost:J. Metals, 1957, vol. 5, p. 918.Google Scholar
  18. 18.
    J. D. Boyd:Trans. ASM, 1969, vol. 62, p. 977.Google Scholar
  19. 19.
    C. Barrett and T. B. Massalski:Structure of Metals, p. 156, McGraw-Hill Book Co., New York, New York, 1966.Google Scholar
  20. 20.
    B. W. Levinger:J. Metals, 1953, vol. 5, p. 195.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • G. F. Pittinato
    • 1
  • W. D. Hanna
    • 2
  1. 1.McDonnell Douglas Astronautics Co.Space Systems CenterHuntington Beach
  2. 2.Aerospace Corp.El Segundo

Personalised recommendations