Advertisement

Metallurgical and Materials Transactions B

, Volume 3, Issue 11, pp 2777–2796 | Cite as

The pearlite reaction

  • M. P. Puls
  • J. S. Kirkaldy
Symposium on the Cellular and Pearlite Reactions

Abstract

A critical appraisal of theory and experiments for both isothermal and forced velocity pearlite is presented. It is concluded for binary systems that both the theoretical models for volume diffusion and boundary diffusion control are well-advanced and adequate for the purposes of experimental test. However, some ambiguity remains in the boundary diffusion model with respect to the thermodynamics of the boundary ”phase” region, so it is still not possible to predict absolute rates of transformation. The theoretical problem for ternary pearlites is also well understood, although rigorous theory seems intractable. A new perturbation procedure for definition of the optimal steady-state spacing is presented and amplified for both isothermal and forced velocity pearlite, and for both volume and boundary diffusion models. In terms of the critical spacing Sc for isothermal pearlite and the spacing at minimum undercooling Sm for forced velocity pearlite the predicted stability points are as follows: {fx2777-1} For isothermal pearlite these perturbation results correspond closely to the state of maximum entropy production rate while for forced velocity pearlite the correspondence is also satisfactory. A detailed analysis of the data leads us to reaffirm the author’s conclusions that the eutectoid reactions in Cu-12 pct Al and some related ternary alloys reported by Asundi and West are controlled by volume diffusion and that the eutectoid reaction in Al-78 Zn reported by Cheetham and Ridley is controlled by boundary diffusion. We conclude further after careful analysis that the pearlite reaction in Fe-0.8 C is controlled for the higher temperatures by volume diffusion of carbon in austenite. We are also led to state that the pearlite transformations in Fe-C-Mn and Fe-C-Ni occur for the most part in a nopartition regime and are therefore controlled by volume diffusion of carbon in austenite, while the transformations in Fe-C-Cr and Fe-C-Mo, being forced by thermodynamics to sustain partition of chromium and molybdenum, are controlled by phase boundary diffusion of the latter elements. nt]mis|M. P. PULS, formerly Postdoctoral Fellow, Department of Metallurgy and Materials Science, McMaster University, Hamilton, Ontario, Canada

Keywords

Austenite Metallurgical Transaction Pearlite Entropy Production Boundary Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Boiling and R. H. Richman:Met. Trans., 1970, vol. 1, p.2095.CrossRefGoogle Scholar
  2. 2.
    Decomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., Interscience Publishers, 1962.Google Scholar
  3. 3.
    W. H. Brandt:J Appl. Phys., 1945, vol. 16, p. 139.CrossRefGoogle Scholar
  4. 4.
    E. Scheil:Z. Metallk., 1946, vol. 37, p. 123.Google Scholar
  5. 5.
    C. Zener:AIME Trans., 1946, vol. 167, p. 550.Google Scholar
  6. 6.
    M. Hillert:Jernkont. Ann., 1957, vol. 141, p. 757.Google Scholar
  7. 7.
    W. A. Tiller:Liquid Metals and Solidification, p. 276, ASM, Cleveland, 1958.Google Scholar
  8. 8.
    K. A. Jackson and J.D. Hunt:Trans. TMS-AIME, 1966, vol. 236, p. 1129.Google Scholar
  9. 9.
    D. Turnbull:Acta Met., 1955, vol. 3, p. 55.CrossRefGoogle Scholar
  10. 10.
    J. W. Cahn:Acta Met., 1959, vol. 7, p. 18.CrossRefGoogle Scholar
  11. 11.
    C. S. Smith:Trans. ASM, 1953,vol. 45,p. 533.Google Scholar
  12. 12.
    J. M. Shapiro and J. S. Kirkaldy:Acta Met., 1968, vol. 16, p. 579.CrossRefGoogle Scholar
  13. 13.
    M. Hillert: Monograph and Report Series no. 33, p. 231, Institute of Metals, 1969.Google Scholar
  14. 14.
    B. Sundquist:Acta Met., 1968, vol. 16, p. 1413.CrossRefGoogle Scholar
  15. 15.
    M. Hillert:Met. Trans., 1972, vol. 3, p. 2729.CrossRefGoogle Scholar
  16. 16.
    J. S. Kirkaldy and M. Mekawi: McMaster University, Hamilton, Ont., Canada, 1972, unpublished research.Google Scholar
  17. 17.
    L. F. Donaghey and W. A. Tiller:Mater. Sci. Eng., 1968-69, vol. 3, p. 231.CrossRefGoogle Scholar
  18. 18.
    G. Bolze: Ph.D. Thesis, McMaster University, May 1970.Google Scholar
  19. 19.
    M. Hillert:Acta Met., 1971, vol. 19, p. 769.CrossRefGoogle Scholar
  20. 20.
    G. Bolze, M. P. Puls, and J. S. Kirkaldy:Acta Met., 1972, vol. 20, p. 73.CrossRefGoogle Scholar
  21. 21.
    B.Sundquist:Acta Met., 1969, vol. 17, p. 967.CrossRefGoogle Scholar
  22. 22.
    J. S. Kirkaldy:Can. J. Phys., 1969, vol. 36, p. 907.CrossRefGoogle Scholar
  23. 23.
    G. R. Purdy, D. Weichert, and J. S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230,p.1025.Google Scholar
  24. 24.
    A. A. Popov and M. S. Mikhalev:Phys. Metals Metattogr., 1959, vol. 7, p. 36.Google Scholar
  25. 25.
    H. I. Aaronson, H. A. Domian, and G. M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 768.Google Scholar
  26. 26.
    M. Hillert:Proc. of the Int. Conf. on the Science and Technology of Iron and Steel, Supplement to Trans. Iron Steel Inst. Japan, 1971, vol. 11, p. 1153.Google Scholar
  27. 27.
    K. A. Jackson and B. Chalmers: inPrinciples of Solidification, by B. Chalmers, p. 201, John Wiley and Sons, New York, 1964.Google Scholar
  28. 28.
    J. S. Kirkaldy:Scripta Met., 1968, vol. 2, p. 565.CrossRefGoogle Scholar
  29. 29.
    S. O’Hara and A. Hellawell:Scripta Met., 1968, vol. 2, p. 107.CrossRefGoogle Scholar
  30. 30.
    F. C. Frank and K. E. Puttick:Acta Met., 1956, vol. 4, p. 206.CrossRefGoogle Scholar
  31. 31.
    J. S. Kirkaldy: inEnergetics in Metallurgical Processes IV, W. M. Mueller, ed., p. 197, Gordon and Breach Science Publishers, 1968. Note that the relations forS △T are in units of mm °C, not cm°C as indicated.Google Scholar
  32. 32.
    M. Hillert: unpublished review onThe Eutectoid Transformation ofAustenite. Google Scholar
  33. 33.
    W. A. Tiller: Cast Iron, ASM Seminar, Detroit, 1964.Google Scholar
  34. 34.
    J. S. Kirkaldy:Can. J. Phys., 1964, vol. 42, p. 1447.CrossRefGoogle Scholar
  35. 35.
    L. Onsager:Phys. Rev., 1931, vol. 37, p. 405.CrossRefGoogle Scholar
  36. 36.
    H.E.Cline:E.Cline: Acta Met, 1971, vol. 19, p. 481.Google Scholar
  37. 37.
    J. W. Cahn and W. C. Hagel: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 131, Interscience Pub-lishers, 1962.Google Scholar
  38. 38.
    D. Brown and N. Ridley:J. Iron Steel Inst., 1966, vol. 204, p. 811.Google Scholar
  39. 39.
    M. K. Asundi and D. R. F. West:J. Inst. Metals, 1966, vol. 94, p. 19.Google Scholar
  40. 40.
    G. E. Pellisier, M. F. Hawkes, W. A. Johnson, and R. F. Mehl:Trans. ASM, 1942, vol. 30, p. 1049.Google Scholar
  41. 41.
    M. Gensamer, E. B. Pearsall, W. S. Pellini, and J. R. Law:Trans. ASM, 1942, vol. 30, p. 983.Google Scholar
  42. 42.
    M. K. Asundi and D. R. F. West:J. Inst. Metals, 1966, vol. 94, p. 327.Google Scholar
  43. 43.
    D. Brown and N. Ridley:J. Iron Steel Inst., 1969, vol. 207, p. 1232.Google Scholar
  44. 44.
    M. Hillert: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 197, Interscience Publishers, 1962.Google Scholar
  45. 45.
    J. E. Hilliard: General Electric Report No. 62-RL-3133M, Oct. 1962.Google Scholar
  46. 46.
    E. Scheil and A. Lange-Weise:Arch. Eisenhüttenw., 1937, vol. 11, p. 93.CrossRefGoogle Scholar
  47. 47.
    C. R. Brooks and E. E. Stansbury:J. Iron Steel Inst, 1965, vol. 203, p. 514.Google Scholar
  48. 48.
    F. M. A. Carpay:Acta Met., 1970, vol. 18, p. 747.CrossRefGoogle Scholar
  49. 49.
    F. M. A. Carpay and J. Van den Boomgaard:Acta Met., 1971, vol. 19, p. 1279.CrossRefGoogle Scholar
  50. 50.
    B. L. Bramfitt and A. R. Marder:Int. Met. Soc. Proc, 1968, p. 43.Google Scholar
  51. 51.
    D. Cheetham and N. Ridley:J. Inst. Metals, 1971, vol. 99, p. 371.Google Scholar
  52. 52.
    N. Ridley, D. Brown, and H. I. Malik: Manchester University, Manchester, England, 1971, unpublished research.Google Scholar
  53. 53.
    J. W. Cahn and W. C. Hagel:Acta Met., 1963, vol. 11, p. 561.CrossRefGoogle Scholar
  54. 54.
    J. Fridberg and M. Hillert:Acta Met, 1970, vol. 18, p. 1253.CrossRefGoogle Scholar
  55. 55.
    J. H. Frye Jr.,, E. E. Stansbury, and D. L. McElroy:AIME Trans., 1953, vol. 197, p.219.Google Scholar
  56. 56.
    F. C. Hull, R. A. Colton, and R. F. Mehl:AIME Trans., 1942, vol. 150, p. 185.Google Scholar
  57. 57.
    E. S. Wajda:Acta Met., 1954, vol. 2, p. 184.CrossRefGoogle Scholar
  58. 58.
    J. J. Kramer, G. M. Pound, and R. F. Mehl:ActaMet., 1958, vol. 6, p. 763.Google Scholar
  59. 59.
    C. Wells, W. Batz, and R. F. Mehl:AIME Trans., 1950, vol. 188, p. 553.Google Scholar
  60. 60.
    R. Trivedi and G. M. Pound:J. Appl. Phys., 1967, vol. 38, p. 3569.CrossRefGoogle Scholar
  61. 61.
    C. Wert:Phys. Rev., 1950, vol. 79, p. 601.CrossRefGoogle Scholar
  62. 62.
    M. L. Plcklesimer, D. L. McElroy, T. M. Kegley, E. E. Stansbury, and J. H. Frye:AIME Trans., 1946, vol. 167, p. 550.Google Scholar
  63. 63.
    D. Chambers and J. S. Kirkaldy: McMaster University, Hamilton, Ont., Canada, 1972, unpublished research.Google Scholar
  64. 64.
    W. A. Tiller:J. Appl. Phys., 1963, vol. 34, p. 3615.CrossRefGoogle Scholar
  65. 65.
    J. S. Kirkaldy: inEnergetics in Metallurgical Processes IV, W. M. Mueller, ed., p. 360, Gordon and Breach, Science Publishers, 1968.Google Scholar
  66. 66.
    J. D. Hunt and J. P. Chilton:J. Inst. Metals, 1963, vol. 92, p. 21.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • M. P. Puls
    • 1
  • J. S. Kirkaldy
    • 2
  1. 1.Atomic Energy of Canada,Ltd.Whiteshell Nuclear Research EstablishmentPinawaCanada
  2. 2.Metallurgy and Materials ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations