Advertisement

Mimicry of natural material designs and processes

  • G. M. Bond
  • R. H. Richman
  • W. P. McNaughton
Materials Synthesis

Abstract

Biological structural materials, although composed of unremarkable substances synthesized at low temperatures, often exhibit superior mechanical properties. In particular, the quality in which nearly all biologically derived materials excel is toughness. The advantageous mechanical properties are attributable to the hierarchical, composite, structural arrangements common to biological systems. Materials scientists and engineers have increasingly recognized that biological designs or processing approaches applied to man-made materials (biomimesis) may offer improvements in performance over conventional designs and fabrication methods. In this survey, the structures and processing routes of marine shells, avian eggshells, wood, bone, and insect cuticle are briefly reviewed, and biomimesis research inspired by these materials is discussed. In addition, this paper describes and summarizes the applications of biomineralization, self-assembly, and templating with proteins to the fabrication of thin ceramic films and nanostructure devices.

Keywords

bone nanostructures natural materials wood biomimesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Breslow, Adjusting the Lock and Adjusting the Key in Cyclodextrin Chemistry: An Introduction,Biomimetic Chemistry, D. Dolphin, C. McKenna, Y. Murakami, and I. Tabushi, Ed., American Chemical Society, 1980, p 1–15Google Scholar
  2. 2.
    S.A. Wainwright, W.D. Biggs, J.D. Currey, and J.M. Gosline,Mechanical Design in Organisms, Edward Arnold, London, 1976Google Scholar
  3. 3.
    A.V. Srinivasan, G.K. Haritos, and F.L. Hedberg, Biomimetics: Advancing Man-Made Materials through Guidance from Nature,Appl. Mech. Rev., Vol 44, 1991, p463–482CrossRefGoogle Scholar
  4. 4.
    J.D. Currey, Biological Composites,J. Mater. Education, Vol 9, 1987, p 118–296Google Scholar
  5. 5.
    V.J. Laraia and A.H. Heuer, The Microindentation Behavior of Several Mollusc Shells,Materials Synthesis Utilizing Biological Processes, Vol 174, MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 125–131Google Scholar
  6. 6.
    V.J. Laraia and A.H. Heuer, Novel Composite Microstructure and Mechanical Behavior of Mollusc Shells,J. Amer. Ceram. Soc., Vol 72, 1989, p 2177–2179CrossRefGoogle Scholar
  7. 7.
    M. Sarikaya, K E. Gunnison, M. Yasrebi, and I.A. Aksay, Mechanical Property—Microstructural Relationships in Abalone Shell,Materials Synthesis Utilizing Biological Processes, Vol 174, MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 109–116Google Scholar
  8. 8.
    R. Eisner, Biomimetics: Creating Materials from Nature’s Blue Prints,The Scientist, 8 July 1991, p 14Google Scholar
  9. 9.
    J.D. Currey, Mechanical Properties of Mother of Pearl in Tension,Proc. Roy. Soc. Lond. B., Vol 196, 1977, p 443–463CrossRefGoogle Scholar
  10. 10.
    J.D. Currey and J.D. Taylor, The Mechanical Behavior of Some Molluscan Hard Tissues,J. Zool. Lond., Vol 173, 1974, p395–406CrossRefGoogle Scholar
  11. 11.
    J.D. Currey and A.J. Kohn, Fracture in the Crossed-Lamellar Structure ofConus Shells,J. Mater. Sci., Vol 11, 1976, p 1615–1623CrossRefGoogle Scholar
  12. 12.
    L.J. Huang and H.D. Li, The Microstructure of the Biomineralized Bivalvia Shells,Materials Synthesis Utilizing Biological Processes, Vol 174,MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 101–108Google Scholar
  13. 13.
    A.P. Jackson, J.F.V. Vincent, and R.M. Turner, The Mechanical Design of Nacre,Proc. Roy. Soc. Lond. B, Vol 234, 1988, p 415–440CrossRefGoogle Scholar
  14. 14.
    A.P. Jackson, J.F.V. Vincent, and R.M. Turner, Comparison of Nacre with Other Ceramic Composites,J. Mater. Sci., Vol 25, 1990, p 3173–3178CrossRefGoogle Scholar
  15. 15.
    M. Omori and N. Watabe, Ed.,The Mechanisms of Biomineralization in Animals and Plants, Tokai University Press, Tokyo, 1980Google Scholar
  16. 16.
    G.H. Nancollas, Ed.,Biological Mineralization and Demineralization, Springer-Verlag, 1982Google Scholar
  17. 17.
    B.S.C. Leadbeater and R. Riding, Ed.,Biomineralization in Lower Plants and Animals, Clarendon Press, Oxford, 1986Google Scholar
  18. 18.
    S.J. Mann, J. Webb, and R.J.P. William, Ed.,Biomineralization: Chemical and Biochemical Perspectives, VCH Publishers, 1989Google Scholar
  19. 19.
    H.A. Lowenstam and S. Weiner,On Biomineralization, Oxford University Press, 1989Google Scholar
  20. 20.
    P.C. Rieke, G.E. Fryxell, A.A. Campbell, S.B. Bentjen, and B.J. Tarasevich, Biomimetic Thin Film Deposition,Supramolecular Architecture, ACS Symposium Series 499, American Chemical Society, 1992, p 61–65Google Scholar
  21. 21.
    A. Berman, J. Hanson, L. Leiserowitz, T.F. Koetzle, S. Weiner, and L. Addadi, Biological Control of Crystal Texture: A Widespread Strategy for Adapting Crystal Properties to Function,Science, Vol 259, 1993, p 776–779CrossRefGoogle Scholar
  22. 22.
    S. Inoue and K. Okazaki, Biocrystals,Scientific American, Vol 236 (No. 4), p 83–92Google Scholar
  23. 23.
    L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, and S. Weiner, A Chemical Model for the Cooperation of Sulfates and Carboxylates in Calcite Crystal Nucleation: Relevance to Biomineralization,Proc. Natl. Acad. Sci., Vol 84, 1987, p 2732–2736CrossRefGoogle Scholar
  24. 24.
    A. Berman, L. Addadi, and S. Weiner, Interactions of Sea-Urchin Skeleton Macromolecules with Growing Calcite Crystals—A Study of Intercrystalline Proteins,Nature, Vol 331, 1988, p 546- 548CrossRefGoogle Scholar
  25. 25.
    J. Moradian-Oldak, F. Frolow, L. Addadi, and S. Weiner, Interactions between Acidic Matrix Macromolecules and Calcium Phosphate Ester Crystals: Relevance to Carbonate Apatite Formation in Biomineralization,Proc. R. Soc. Lond. B, Vol 247, 1992, p 47–55CrossRefGoogle Scholar
  26. 26.
    L. Addadi, J. Moradian-Oldak, and S. Weiner, Macromolecule-Crystal Recognition in Biomineralization: Studies Using Synthetic Polycarboxylate Analogs,Surface Reactive Peptides and Polymers: Discovery and Commercialization, C.S. Sikes and A.P. Wheeler, Ed., ACS Symposium Series 444, American Chemical Society, 1991, p 13–27Google Scholar
  27. 27.
    S. Mann, B.R. Heywood, S. Rajam, and J.B.A. Walker, Crystal Engineering of Inorganic Materials at Organized Organic Surfaces,Surface Reactive Peptides and Polymers: Discovery and Commercialization, C.S. Sikes and A.P. Wheeler, Ed., ACS Symposium Series 444, American Chemical Society, 1991, p 28–41Google Scholar
  28. 28.
    C.S. Sikes, M.L. Yeung, and A.P. Wheeler, Inhibition of Calcium Carbonate and Phosphate Crystallization by Peptides Enriched in Aspartic Acid and Phosphoserine,Surface Reactive Peptides and Polymers: Discovery and Commercialization, C.S. Sikes and A.P. Wheeler, Ed., ACS Symposium Series 444, American Chemical Society, 1991, p 50–71Google Scholar
  29. 29.
    A.P. Wheeler, K.C. Low, and C.S. Sikes, CaCO3 Crystal-Binding Properties of Peptides and Their Influence on Crystal Growth,Surface Reactive Peptides and Polymers: Discovery and Commercialization, C.S. Sikes and A.P. Wheeler, Ed., ACS Symposium Series 444, American Chemical Society, 1991, p 72–84Google Scholar
  30. 30.
    M. Yasrebi, G.H. Kim, K.E. Gunnison, D.L. Milius, M. Sarikaya, and I.A. Aksay, Biomimetic Processing of Ceramics and Ceramic-Metal Composites,Better Ceramics through Chemistry IV, Vol 180,MRS Symposium Proceedings, B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich, Ed., Materials Research Society, 1990, p 625–635Google Scholar
  31. 31.
    W.C. Clegg, The Fabrication and Failure of Laminar Ceramic Composites,Acta Metall. Mater., Vol 40, 1992, p 3085–3093CrossRefGoogle Scholar
  32. 32.
    New Composites Patterned after Seashells, Bones,Cutting Tool Engineering, Vol 44 (No. 5), 1992, p 10Google Scholar
  33. 33.
    J.D. Birchall, The Importance of the Study of Biominerals to Materials Technology,Chemical and Biochemical Perspectives, S. Mann, J. Webb, and R. Williams, Ed., VCH Publishers, 1989, p 491–509Google Scholar
  34. 34.
    P. Calvert, Biomimetic Ceramics and Composites,MRS Bull., Vol 17 (No. 10), 1992, p 37–40CrossRefGoogle Scholar
  35. 35.
    M.A. Tung, L.M. Staley, and J.F. Richards, Studies on Egg Shell Strength, Shell Stiffness, Shell Quantity, Egg Size and Shape,Br. Poult. Sci., Vol 9, 1968, p 221–229CrossRefGoogle Scholar
  36. 36.
    G.M. Bond, V.D. Scott, and R.G. Board, Correlation of Mechanical Properties of Avian Eggshells with Hatching Strategies,Zool. Lond. A, Vol 209, 1986, p 225–237CrossRefGoogle Scholar
  37. 37.
    K. Simkiss and C. Tyler, A Histochemical Study of the Organic Matrix of Hen Eggshells,Q. J. Microsc. Sc., Vol 98, 1957, p 19–28Google Scholar
  38. 38.
    K.M. Wilbur and K. Simkiss, Calcified Shells,Comprehensive Biochemistry, Vol 26A, M. Florkin and V.H. Stotz, Ed., Elsevier, 1968Google Scholar
  39. 39.
    K. Simkiss and C. Tyler, Reactions between Eggshell Matrix and Metallic Cations,Q. J. Microsc. Sc., Vol 99, 1958, p 5–13Google Scholar
  40. 40.
    P.C.M. Simons, Ultrastructure of the Hen Eggshell and Its Physiological Interpretation, Communication 175, Central Institute Poultry Research, Beekbergen, The Netherlands, 1971Google Scholar
  41. 41.
    K. Simkiss, Calcium Metabolism and Avian Reproduction,Biol. Rev., Vol 36, 1961, p 321–367CrossRefGoogle Scholar
  42. 42.
    A.S. Cooke and D.A. Balch, Studies of Membrane, Mammillary Cores and Cuticle of the Hen Egg Shell,Br. Poult. Sci., Vol 11, 1970, p 345–352CrossRefGoogle Scholar
  43. 43.
    G.M. Bond, Avian Eggshells and the Hatching Process, Ph.D. thesis, University of Bath, U.K., 1980Google Scholar
  44. 44.
    G.M. Bond, R.G. Board, and V.D. Scott, A Comparative Study of Changes in the Fine Structure of Avian Eggshells during Incubation,Zoo. J. Linnean Soc., Vol 92, 1988, p 105–113CrossRefGoogle Scholar
  45. 45.
    J.L. Arias, M.S. Fernandez, V.J. Laraia, A.H. Heuer, and A. I. Caplan, The Avian Eggshell as a Model of Biomineralization,Materials Synthesis Based on Biological Processes, Vol 218,MRS Symposium Proceedings, M. Alper, P.D. Calvert, R. Frankel, P.C. Rieke, and D. Tirrell, Ed., Materials Research Society, 1991, p 193–201Google Scholar
  46. 46.
    D.J. Fink, A.I. Caplan, and A.H. Heuer, Eggshell Mineralization: A Case Study of a Bioprocessing Strategy,MRS Bull., Vol 17 (No. 10), 1992, p 27–31CrossRefGoogle Scholar
  47. 47.
    G.M. Bond and R. Baker, unpublished researchGoogle Scholar
  48. 48.
    G. Jeronimidis, The Fracture Behavior of Wood and the Relations between Toughness and Morphology,Proc. R. Soc. Lond. B, Vol 208, 1980, p 447–460CrossRefGoogle Scholar
  49. 49.
    G.D. Small and M.P. Ansell, The Energy-Absorbing Properties of a Novel Cellular Structure,J. Mater. Sci., Vol 22, 1987, p 2717–2722CrossRefGoogle Scholar
  50. 50.
    M.P. Ansell, Cellular Composites and Process and Apparatus for Their Manufacture, Canadian Patent 1,166,942, 1985Google Scholar
  51. 51.
    R.C. Chaplin, J.E. Gordon, and G. Jeronimidis, Composite Material, U.S. Patent 4,409,274, 1983Google Scholar
  52. 52.
    S. Weiner, T. Arad, and W. Traub, Crystal Organization in Rat Bone Lamellae,FEBS, Vol 285, 1991, p 49–54CrossRefGoogle Scholar
  53. 53.
    S. Weiner and W. Traub, Bone Structure: From Angstroms to Microns,FASEB J., Vol 6, 1992, p 879–885CrossRefGoogle Scholar
  54. 54.
    J.D. Currey and K. Brear, Fractal Analysis of Compact Bone and Antler Fracture Surfaces,Biomimetics, Vol 1, 1992, p 103–118Google Scholar
  55. 55.
    K.S. TenHuisen and P.W. Brown, Microstructural Development and Formation Kinetics in a Mineralizing System: Gelatin-Gypsum,Biomimetics, Vol 1, 1992, p 131–150Google Scholar
  56. 56.
    J.F.V. Vincent, Insect Cuticle as an Archetype Composite,U.S.-Japan Workshop on Smart/Intelligent Materials and Systems, I. Ahmad, A. Crowson, C.A. Rogers, and M. Aizawa, Ed., Technomic Publishing Co., Lancaster, PA, 1990, p 187–195Google Scholar
  57. 57.
    N.F. Hadley, The Arthropod Cuticle,Scientific American, July 1986, p 104–112Google Scholar
  58. 58.
    S.L. Gunderson and J.M. Whitney, Insect Cuticle Microstructure and Its Applications to Advanced Composites,Biomimetics, Vol 1, 1992, p 177–197Google Scholar
  59. 59.
    S.L. Gunderson and R.C. Schiavone, The Insect Exoskeleton: A Natural Structural Composite,JOM, Vol 41 (No. 11), 1989, p 60–62CrossRefGoogle Scholar
  60. 60.
    J.E. Saliba, R.C. Schiavone, S.L. Gunderson, and D.G. Taylor, Mechanics of Natural Composites,Materials Synthesis Based on Biological Processes, Vol 218, MRS Symposium Proceedings, M. Alper, P.D. Calvert, R. Frankel, P.C. Rieke, and D. Tirrell, Ed., Materials Research Society, 1991, p 215–220Google Scholar
  61. 61.
    B.J. Tarasevich and P.C. Rieke, Ceramic Oxide Thin Film Formation Utilizing Biological Processes,Materials Synthesis Utilizing Biological Processes, Vol 174,MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 51–60Google Scholar
  62. 62.
    P.C. Rieke, S.B. Bentjen, B.J. Tarasevich, T.S. Autrey, and D. A. Nelson, Synthetic Surfaces as Models for Biomineralization Substrates,Materials Synthesis Utilizing Biological Processes, Vol 174,MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 69–80Google Scholar
  63. 63.
    B.C. Bunker, P.C. Rieke, B.J. Tarasevich, A.A. Campbell, G. E. Fryxell, G.L. Gradd, et al., Ceramic Thin-Film Formation on Functionalized Interfaces through Biomimetic Processing,Science, Vol 264, 1994, p 48–55CrossRefGoogle Scholar
  64. 64.
    P.A. Bianconi, J. Lin, and A.R. Strzelecki, Crystallization of an Inorganic Phase Controlled by a Polymer Matrix,Nature, Vol 349, 1991, p 315–317CrossRefGoogle Scholar
  65. 65.
    P.D. Calvert and A. Broad, Biomimetic Routes to Thin Film Ceramics,Materials Synthesis Utilizing Biological Processes, Vol 174,MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 61–67Google Scholar
  66. 66.
    J.W. Burdon and P.D. Calvert, Growth of TiO2 Particles within a Polymeric Matrix,Materials Synthesis Based on Biological Processes, Vol 218,MRS Symposium Proceedings, M. Alper, P.D. Calvert, R. Frankel, P.C. Rieke, and D. Tirrell, Ed., Materials Research Society, 1991, p 203–212Google Scholar
  67. 67.
    G. Benedek and H. Frauenfelder, Ed.,Biomolecular Materials: Report of the University/Industry Workshop, National Science Foundation, 1990Google Scholar
  68. 68.
    P. Mueller, D.O. Rudin, H.T. Tien, and W.C. Wescott, Methods for the Formation of Single Biomolecular Lipid Membranes in Aqueous Solution,J. Phys. Chem., Vol 67, 1965, p 534–535CrossRefGoogle Scholar
  69. 69.
    M. Montal and P. Mueller, Formation of Biomolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties,Proc. Nat. Acad. Sci., Vol 69, 1972, p 3561–3566CrossRefGoogle Scholar
  70. 70.
    S. Baral and J.H. Fendler, Photoinduced Electron Transfers in Membrane Mimetic Systems,Photoinduced Electron Transfer,Part B: Experimental Techniques and Medium Effects, M.A. Fox and M. Chanon, Ed., Elsevier, 1988, p 541–598Google Scholar
  71. 71.
    K. Kalyansundaram, Photoprocesses in Lipids, Surfactant Vesicles and Liposomes,Photochemistry in Microheterogeneous Systems, Academic Press, 1987, p 173–220Google Scholar
  72. 72.
    T.M. Cotton, J.-H. Kim, and R.A. Uphaus, Spectroscopic and Electrochemical Studies of Oriented Monolayers on Electrode Surfaces,Microchemical J., Vol 42, 1990, p 44–71CrossRefGoogle Scholar
  73. 73.
    H. Kuhn, Organized Monolayers—Building Blocks in Constructing Supramolecular Devices,Molecular Electronics Biosensors and Biocomputers, F.T. Hong, Ed., Plenum Press, 1989, p 3–24Google Scholar
  74. 74.
    G. Roberts, Ed.,Langmuir-Blodgett Films, Plenum Press, 1990Google Scholar
  75. 75.
    J.-H. Furhop and D. Fritsch, Bolaamphiphiles Form Ultrathin, Porous and Unsymmetric Monolayer Lipid Membranes,Acc. Chem. Res., Vol 19, 1986, p 130–137CrossRefGoogle Scholar
  76. 76.
    S. Mann, D.D. Archibald, J.M. Didymus, B.R. Heywood, F. C. Meldrum, and V.J. Wade, Biomineralization: Biomimetic Potential at the Inorganic-Organic Interface,MRS Bull., Vol 17 (No. 10), 1992, p 32–36CrossRefGoogle Scholar
  77. 77.
    H. Liu, G.L. Graff, M. Hyde, M. Sarikaya, and I.A. Aksay, Synthesis of Ultrafine, Multicomponent Particles Using Phospholipid Vesicles,Materials Synthesis Based on Biological Processes, Vol 218,MRS Symposium Proceedings, M. Alper, P.D. Calvert, R. Frankel, P.C. Rieke, and D. Tirrell, Ed., Materials Research Society, 1991, p 115–121Google Scholar
  78. 78.
    S. Bhandarkar, I. Yaacob, and A. Bose, Synthesis of Nanoceramic Particles by Intravesicular Precipitation,Better Ceramics through Chemistry IV, Vol 180,MRS Symposium Proceedings, B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich, Ed., Materials Research Society, 1990, p 637–641Google Scholar
  79. 79.
    K. Douglas, N.A. Clark, and K.J. Rothschild, Nanometer Molecular Lithography,Appl. Phys. Lett., Vol 48, 1986, p 676–678CrossRefGoogle Scholar
  80. 80.
    J.H. McAlear and J.M. Wehrung, Biotechnical Electron Devices,Molecular Electronic Devices, F.L. Carter, R.E. Siatkowski, and H. Wohltjen, Ed., North Holland, 1988, p 29–38Google Scholar
  81. 81.
    K. Douglas, G. Devaud, and N.A. Clark, Transfer of Biologically Derived Nanometer-Scale Patterns to Smooth Substrates,Science, Vol 257, 1992, p 642–644CrossRefGoogle Scholar
  82. 82.
    K. Douglas, N.A. Clark, and K.J. Rothschild, Biomolecular/Solid State Nanoheterostructures,Appl. Phys. Lett., Vol 56, 1990, p 692–694CrossRefGoogle Scholar
  83. 83.
    K. Douglas, N.A. Clark, and K.J. Rothschild, Composite Biomolecular/Solid State Nanostructures,Materials Synthesis Utilizing Biological Processes, Vol 174,MRS Symposium Proceedings, P.C. Rieke, P.D. Calvert, and M. Alper, Ed., Materials Research Society, 1990, p 151–156Google Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • G. M. Bond
    • 1
  • R. H. Richman
    • 2
  • W. P. McNaughton
    • 3
  1. 1.New Mexico Institute of Mining and TechnologySocorroUSA
  2. 2.Daedalus Associates Inc.Mountain ViewUSA
  3. 3.Cornice EngineeringDurangoUSA

Personalised recommendations