Structural bonds and the properties of clays

  • Osipov V. I. 


Structural bonds in clays are determined by forces of diverse nature: chemical (valent), ion-electrostatic, molecular, capillary, electrostatic (Coulomb) and magnetic. Based on theoretical calculations, an assessment is made of the role of each type of force in forming the structural bonds at an individual contact between two particles. Proceeding from the character and the energy of contact interactions, three types of contacts between clay particles are defined: coagulation, atomic (point) and phase (developed) contacts. In conclusion the main types of clayey soils are characterized and the fundamental significance of structural bonds in evaluating the strength and deformation properties of clays is demonstrated.


Clay Clay Particle Clayey Soil Structural Bond Hydrate Film 

Liaisons Structurales et Proprietes des Argiles


Les liaisons structurales dans les argiles sont déterminées par des forces de diverses natures: forces chimiques (valence), ioniques-électrostatiques, moléculaires, capillaires, électrostatiques (de Coulomb) et magnétiques. A partir de calculs théoriques, on évalue le rôle des diverses forces qui forment la liaison structurale entre deux particules d’argile en contact. D’après le caractère et l’énergie des intéractions de contact, on définit trois principaux types de contacts entre particules: le contact coagulant, le contact atomique (par point) et le contact en phase (développé). En conclusion, on donne les earactères des principaux types de sols argileux et l’on démontre l’importance fondamentale des liaisons structurales pour l’évaluation des propriétés de résistance et de déformation des argiles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GORKOVA I.M. (1965): Structural and deformational peculiarities of sedimentary rocks with a varying degree of consolidation and lithification. Moscow, “Nauka”Google Scholar
  2. 2.
    GORKOVA I.M. (1966): Theoretical bases of evaluating sedimentary rocks for engineering geological purposes. Moscow, “Nauka”Google Scholar
  3. 3.
    DERYAGIN B.V. — ABRIKOSOVA I.I. (1951): Direct measurement of molecular attraction forces as a function of the distance between surfaces. J. Exp. Theor. Phys., 1951, iss.8Google Scholar
  4. 4.
    LIFSHITS Y.M. (1954): Theory of molecular attraction forces between condensed bodies. Repts. USSR Ac. Sci., vol.97, no 4Google Scholar
  5. 5.
    LOMTADZE V.D. (1955): Changes in composition, structure, density and cohesiveness of clays when compacted by great loads. Trans. Lab. Hydrogeol. Probl., vol. 12, MoscowGoogle Scholar
  6. 6.
    OSIPOV V.I. — SOKOLOV V.N. (1974): Role of ion-electrostatic forces in forming the structural bonds of clays. Moscow Univ. Herald, Geology, no 1Google Scholar
  7. 7.
    OSIPOV Y.B. (1968): Investigation of clay suspensions, pastes and sediments in magnetic field. Moscow, Moscow State Univ. Publ. HouseGoogle Scholar
  8. 8.
    REBINDER P.A. (1956): Structural mechanical properties of clayey soils and the present day concepts on the physico-chemistry of colloids. In “Proceedings of the Conference on Engineering Geological Properties of Rocks and the Methods of their Investigation”, MoscowGoogle Scholar
  9. 9.
    REBINDER P.A. (1963): Problems of the formation of dispersed systems and the structures in these systems: physico-chemical mechanics of dispersed structures and solid bodies. In “Present day problems of physical chemistry”, vol.3, Moscow, Moscow Univ. Publ. HouseGoogle Scholar
  10. 10.
    SERGEYEV Y.M. (1949): On the question of the nature of mechanical strength in dispersed soils. Transactions of Moscow State University, iss.133Google Scholar
  11. 11.
    SOKOLOV V.N. (1973): Water content effect on the strength of clay particle structural bonds. Moscow Univ. Herald, Geology, no 6Google Scholar
  12. 12.
    FILATOV M.M. (1936): On the microstructure of soils in connection with their deformation under load. In “Physics of USSR Soils”, Proc. Conf. of Section of Int. Soil Sci. Assoc., vol.5Google Scholar
  13. 13.
    SHCHUKIN Y.D. (1965): On some problems of the physicochemical theory of strength in finely dispersed porous bodies — catalysts and sorbents. Kinetics and catalysis, vol.6, no 11Google Scholar
  14. 14.
    BARSHAD J. (1950): The effect of the interlayer cations on the expansion of the mica type of crystal lattice. Am. Min., vol.35Google Scholar
  15. 15.
    HAMAKER H.C. (1937): The London—Van der Waals attraction between spherical particles. Physica, 4, no 10CrossRefGoogle Scholar
  16. 16.
    JORDINE E.St.A. — BODMAN G.B. — GOLD A.H. (1962): Effect of surface ions on the mutural interactions of montmorillonite particles. Soil Sci., vol.94, no 6Google Scholar
  17. 17.
    JORDINE E.St.A. — STEEL B.J. — WOLFE J.D. (1965): Application of electrostatic models to the colloidal behaviour of plate-shaped particles. Bull. Chem. Soc. Japan, vol.38, no 2Google Scholar
  18. 18.
    LONDON F. (1937): The general theory of molecular forces. Trans. Faraday Soc., vol.33, no 8Google Scholar
  19. 19.
    OSIPOV V.I. — SERGEYEV Y.M. (1972): Crystallochemistry of clay minerals and their properties. Bull. Intern. Assoc. of Eng. Geol.”, spec. iss., no 5Google Scholar
  20. 20.
    SCHOFIELD R.K. — SAMSON H.R. (1954): Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Disc. Faraday Soc., no 18Google Scholar
  21. 21.
    VAN OLPHEN H. (1951): Rheological phenomena of clay soils in connection with the charge distribution on the micelles. Disc. Faraday Soc.Google Scholar
  22. 22.
    VAN OLPHEN H. (1963): An introduction to clay colloid chemistry. Interscience Publ., N.Y.Google Scholar
  23. 23.
    VERWEY E. — OVERBECK T. (1948): Theory of the stability of liophobic colloids. New York—AmsterdamGoogle Scholar

Copyright information

© International Assocaition of Engineering eology 1975

Authors and Affiliations

  • Osipov V. I. 
    • 1
  1. 1.Geological DepartmentMoscow State UniversityMoscowUSSR

Personalised recommendations