Wadi natural aggregates in Western Saudi Arabia for use in Concrete

  • Harthi A. A. Al 
  • Abo Saada Y. E. 


The engineering properties (physical and mechanical) of Wadi Al-Yamanyah natural aggregate were determined. In addition, correlations between these properties have been made. This Wadi is located in the central part of the western province of Saudi Arabia between Makkah and Taif. The aggregate along the Wadi was studied and five major rock units were identified namely granite, granodiorite, gneiss amphibole schist and andesite. These rocks were classified into three aggregate groups: basalt, granite and schist.

Ninety aggregate samples were carefully collected and tested. The results of overall aggregate properties pointed out that Wadi Al-Yamanyah natural mixed aggregate is within the international and local specification limits and it is suitable for use in concrete. The estimated volume of natural aggregate in the Wadi is about 2 million m3.

The engineering properties of individual aggregate groups were also determined. Basalt and schist groups, which represent about 65% of the Wadi natural aggregate, were of higher quality and low degree of alterations than the granite group.

Direct and inverse relationships were found between some physical and mechanical properties for mixed natural aggregate of Wadi Al-Yamanyah with the exception of elongation index (IE). It is recommended to use the derived equations, representing the best fit between the aggregate properties, with care and for rough estimation only.


Saudi Arabia Natural Aggregate British Standard Institution Aggregate Property Mixed Aggregate 

Utilisation de granulats naturels d’oueds pour la fabrication de bétons (Ouest de l’Arabie Saoudite)


L’étude porte sur les propriétés géotechniques des granulats naturels extraits de l’oued Al-Yamanyah, et essaie d’établir quelques corrélations entre ces propriétés. Cet oued est situé dans la partie centrale de la provence occidentale de l’Arabie Saoudite, entre Makkah et Taïf. Cinq espèces pétrographiques principales ont été identifiées dans les granulats: granite, granodiorite, gneiss, schiste amphibolique et andésite. Elles ont été regroupées en trois entités: basalte, granite, schiste.

Les essais ont été réalisés sur 90 échantillons et ont montré que globalement les granulats de cet oued convenaient pour la fabrication des bétons, le volume estimé des réserves étant d’environ 2 millions de mètres cubes.

Les caractéristiques des trois entités ont été également étudiées séparément: l’ensemble «basalte-schistes» qui représente 65% du total des alluvions est de meileure qualité et moins altéré que l’ensemble «granite».

Des essais de corrélation ont également été réalisés, qu’il ne faut utiliser qu’avec prudence et seulement pour des estimations grossières.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AL-EDEENAN, SHEHATA W. and SABTAN A., 1994: Effect of Petrography on engineering properties of coarse aggregates, Wadi Millah, Saudi Arabia. Proc. 7th International Congress, International Association of Engineering Geology, Lishon, Portugal, pp. 3165–3170.Google Scholar
  2. AL-MEZGAGI H.A., KHIYAMI H.A., SABTAN A.A. and GHAZAL M.M., 1994: Effect of particle shape on the strength of concrete. Proc. 7th International Congress, Internation Association of Engineering Geology, Lisbon, Portugal, pp. 3171–3174.Google Scholar
  3. American Society for Testing and Materials, ASTM, 1978: Significance of tests and properties of concrete making materials. ASTM STP 169B.Google Scholar
  4. American Society for Testing and Materials, ASTM, 1983: Test for soundness of aggregates by use of sodium sulphate or magnesium sulphate. ASTM C 88-83.Google Scholar
  5. American Society for Testing Materials, 1985: Standard practice for petrographic examination of aggregates for concrete. Philadelphia, USA, ASTM C 295-85.Google Scholar
  6. American Society for Testing Materials, 1986: Standard specifications for concrete aggregates. ASTM Designation C33.Google Scholar
  7. American Society for Testing Materials, 1989: Resistance to abrasion of small-size coarse aggregate by use of the Los Angeles machine. ASTM C 131-89.Google Scholar
  8. BLOEM D.L. and GAYNOR R.D., 1963: Effects of aggregate properties on strength concrete. J. of the American Concrete Institute 60, (10), 1429–1455.Google Scholar
  9. British Standards Institution, BS 812: 1975: Methods, for sampling and testing of mineral aggregates and fillers.Google Scholar
  10. British Standards Institution, BS 812: Part 105.1: 1989: Methods for determination of particle shape: Flakness index.Google Scholar
  11. British Standards Institution, BS 812: Part 105.2: 1990: Methods for determination of particle shape: Elongation index of coarse aggragate.Google Scholar
  12. BROWN G.F. and JACKSON R.O., 1978: An overview of the geology of western Arabia. DGMR, Jeddah, Saudi Arabia.Google Scholar
  13. COLLIS L. and FOX R.A., 1985: Aggregates: Sand, Gravel and Crushed Rocks Aggregates for Construction Purposes. Geological Society, London, Engineering Geology Special Publication 1.Google Scholar
  14. DHIR R.K., RAMSAY D.M. and BALFOUR N., 1971: A study of the aggregate impact and crushing value tests. J. Inst. of Highway Engineers, 18: 17–27.Google Scholar
  15. FOOKES P.G., 1980: An introduction to the influence of natural aggregates on the performance and durability of concrete. Q.J. Eng. Geol., London, 13 (4) 207–229.CrossRefGoogle Scholar
  16. FOOKES P.G. and HIGGINBOTTOM I.E., 1980: Some problems of construction aggregates in desert areas, with particular reference to the Arabian Peninsula. 2: Investigation, production and quality control. Proc. Instn. Civ. Engrs 68: 69–90.Google Scholar
  17. GHOSH D.K., 1980: Relationship between petrological, chemical and geomechanical properties of Deccan basalts, India. IAEG Bull. 22: 287–292.Google Scholar
  18. GOSWAMI S.C., 1984: Influence of geological factors on soundness and abrasion resistance of road surface aggregates — A case study. IAEG Bull., 30: 59–61.Google Scholar
  19. HAMMERSLEY G.P., 1989: The use of petrography in the evaluation of aggregates. Concrete, 23 (10).Google Scholar
  20. HARALDSSON H., 1984: Relations between petrography and the aggregate properties of Icelandic rocks. IAEG Bull. 30: 73–76.Google Scholar
  21. HARTLEY A., 1970: The influence of geological factors upon the mechanical properties of road surfcing aggregates (with particular reference to Bristish conditions and practice). Proc. 21st Symp. Highway Geological, University of Kansas.Google Scholar
  22. HARTLEY A., 1974: A review of the geological factors influencing the mechanical properties of road surface aggregate. Q.J. Eng. Geol. 7: 69–100.CrossRefGoogle Scholar
  23. IRFAN T.Y., 1994: Aggregate properties and resources of granitic rocks for use in concrete in Hong King. Q.J. of Engin Geol., 27: 25–38.CrossRefGoogle Scholar
  24. KAZI A. and AL-MANSOUR Z.R., 1980: Influence of geological factors on abrasion and soundness characteristics of aggregate. Engng. Geol. 15: 195–203.CrossRefGoogle Scholar
  25. KNILL D.C., 1978: Aggregates, sand, gravel and constructional stone. Industrial Geology (Edit, Knill, J.L.), 166–195. Oxford Univ. Press, Oxford.Google Scholar
  26. LEES G. and KENNEDY C.K., 1975: Quality, shape and degradation of aggregates, Q.J. Eng. Geol. 8: 193–209.CrossRefGoogle Scholar
  27. MURDOCK L.J. and BROOK K.M., 1979: Concrete materials and practice. 5th Edition, Edward Arnold, London.Google Scholar
  28. MOORE T.A. and AL-REHAILI M.H., 1989: Geological map of the Makkah Quadrangle, Sheet 21D. Directorate General of Mineral Resofurces, MPMR, Jeddah, Saudi Arabia.Google Scholar
  29. NEVILLE A.M., 1981: Properties of concrete. 3rd Edition, Pitman, London.Google Scholar
  30. ORCHARD D.F., 1976: Concrete technology, properties and testing of aggregates. Vol. 3, Applied Science Publishers Ltd., London.Google Scholar
  31. RAMSAY D.M., 1965: Factors influencing aggregate impact value in rock aggregate. Quarry Managers Journal, London, 49: 129–134.Google Scholar
  32. RAMSAY D.M., DHIR R.K. and SPENCE J.M., 1977: The practical and theoretical merits of the aggregate impact value in the study of crushed rock aggregate. Proc. Conf. on Rock Engineering, Newcastle — Upon — Tyne, U.K.Google Scholar
  33. SABINE P.A., MOREY J.E. and SHERGOLD F.A., 1954: The correlation of the mechanical properties and petrography of a sines of quartz dolerite roadstones. Journal Appl. Chem. 4: 131–137.CrossRefGoogle Scholar
  34. SMITH M.R. and COLLIS L., 1993: Aggregates: Sand, Gravel and crushed rock aggregates for construction purposes, 2nd Ed., Geological Society, Engineering Geology, Special Publication No. 9, London, 339 p.Google Scholar
  35. TURK N. and DEARMAN W.R., 1988: An investigation into the influence of size on the mechanical properties of aggregate. IAEG Bull. 38: 143–149.Google Scholar
  36. TURK N. and DEARMAN W.R., 1989: An investigation of the relations between ten percent fines load and crushing value of aggregates (U.K.), IAEG Bull. 39: 145–154.Google Scholar

Copyright information

© International Assocaition of Engineering eology 1997

Authors and Affiliations

  • Harthi A. A. Al 
    • 1
  • Abo Saada Y. E. 
    • 1
  1. 1.Dept. of Engineering Geology, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations