Landslides — Cause and effect

  • Radbruch-Hall D. H. 
  • Varnes D. J. 
Symposium 113 Geological Hazards And The Environment


Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory.

Areal studies — some embracing entire countries — have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris.

Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities.


Rock Mass Debris Flow Landslide Susceptibility Slope Stability Slope Failure 

Éboulements De Terrain — Cause Et Effet


Les éboulements de terrain peuvent créer des perturbations séismiques; ils peuvent également résulter de perturbations séismiques, et des éboulements produits par tremblement de terre ont coûté des vies dans plusieurs pays. Les éboulements peuvent entraîner des inondations désastreuses, particulièrement quand les barrages de matériel éboulé en travers d’un fleuve se rompent, les inondations peuvent déclancher des éboulements. Le mouvement de masse sur les pentes est en général un processus majeur de l’environnement géologique qui place plusieures contraintes sur les développements de la science de l’ingénieur. Pour comprendre et prévoir à la fois les causes et les effets des mouvements de masse sur les pentes, il faut faire des études à l’échelle régionale, au niveau du site particulier et dans le laboratoire.

Les études régionales, certaines couvrant des pays entiers, ont montré que certaines conditions géologiques sur les pentes facilitent les éboulements de terrain; ces conditions englobent les roches intensément cisaillées, les roches finement fragmentées et pauvrement consolidées, les roches dures fracturées reposant sur des roches moins résistantes, ou les accumulations meubles de fin matériel de surface.

Les études de terrain, aussi bien que les études de models mathématiques et physiques, augmentent notre compréhension des mécanismes à la base des éboulements dans des roches fracturées; elles aident à trouver des solutions pratiques au problème des éboulements de terrain ayant trait à de nombreuses activités humaines. La rupture progressive des pentes a été étudiée à la fois en mécanique des sols et en mécanique des roches. De nouveaux procédés ont été développés pour évaluer la réaction des pentes et des talus aux tremblements de terre. La méthode de l’élément fini est utilisée très fréquemment pour le calcul de la stabilité des pentes dans les roches fracturées par des diaclases, par des failles, et par d’autres discontinuités.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON R.A. — SCHUSTER R.L. (1970) : Stability of slopes in clay shales interbedded with Columbia River basalt: Proceedings of the 8th Annual Engineering Geology and Soils Engineering Symposium, Pocatello, Idaho, April 1–3, 1970, p. 273–284.Google Scholar
  2. ARANGO I. — SEED H.B. (1974): Seismic stability and deformation of clay slopes: Jour. Geotechnical Engineering Div., Proc., Am. Soc. Civil Engrs., v. 100, no. GT 2, p. 139–156.Google Scholar
  3. AVGHERINOS P.J. — SCHOFIELD A.N. (1969): Drawdown failures of centrifuged models: Proc. 7th Int. Conf. on Soil Mech. and Found. Eng., v. II, p. 497–505.Google Scholar
  4. BARTON N. (1974): Rock slope performance as revealed by a physical joint model: Int. Soc. for Rock Mech. Cong.,Denver, vol. II, part B, p. 765–773.Google Scholar
  5. BASSETT R.H. (1973): Centrifugal model tests of embankments on soft alluvial foundations: Proc. 8th Int. Conf. on Soil Mech. and Found. Eng., v. 22, p. 23–30.Google Scholar
  6. BEA R.G. — BERNARD H.A. ARNOLD P. — DOYLE E.H. (1975): Soil movements and forces developed by wave-induced slides in the Mississippi Delta: Jour. Petroleum Technology, v. 27, p. 500–514.CrossRefGoogle Scholar
  7. BECK A.C. (1968): Gravity faulting as a mechanism of topographic adjustment: New Zealand Jour. Geology and Geophysics, v. 11, no. 1, p. 191–199.CrossRefGoogle Scholar
  8. BERNAIX J. (1974): Properties of rock and rock masses: Proc. of 3rd Cong., Int. Soc. Rock Mech., v. 1, Pt. A, p. 9–38.Google Scholar
  9. BISHOP F.W. (1973): The stability of tips and spoil heaps: Quart. Jour. Engineering Geology, v. 6, p. 335–376.CrossRefGoogle Scholar
  10. BJERRUM Laurits (1967): Progressive failure in slopes of overconsolidated plastic clay and clay shales: Am. Soc. Civil Engrs. Proc., Jour. of the Soil Mech. and Found. Div., v. 93, no. SM 5. Part 1, p. 3–49.Google Scholar
  11. BLAKE M.C. Jr. — JONES D.L. (1974): Origin of Franciscan melanges in northern California,in DOTT R.H., Jr., and SHAUER, R.H., eds., Modern and ancient geosynclinal sedimentation: Soc. of Econ. Paleontologists and Mineralogists, Spec. Pub. No. 19, p. 345–357.Google Scholar
  12. BLAKE M.C. Jr. — SMITH J.T. — WENTWORTH C.M. — WRIGHT R.H. (1971): Preliminary geologic map of western Sonoma County and northernmost Marin County, California: U.S. Geol. Survey open-file map, scale 1:62,500.CrossRefGoogle Scholar
  13. BRABB E.E. — PAMPEYAN E.H. — BONILLA M.G. (1972): Landslide susceptibility in San Mateo County. California: U.S. Geol. Survey Misc. Field Studies Map MF-360.Google Scholar
  14. BRAWNER, C.O. (1970): Remarks during symposium on Theme 7, Stability of natural and excavation slopes: permanent and temporary: Proc. 2nd Int. Soc. Rock Mech. Cong., Beograd, v. 4, p. 571–572.Google Scholar
  15. BRAWNER C.O. (1972): Redesign and construction of a tailings dam to resist earthquakes,in BRAWNER, C.O., and MILLIGAN, V., Geotechnical practice for stability in open pit mining: Proc. of 2nd Int. Conference on stability in open pit mining, Vancouver, 1971, p. 133–150.Google Scholar
  16. BRAY J.W. (1967): A study of jointed and fractured rock, Part I, Fracture patterns and their failure characteristics; Part II, Theory of limiting equilibrium: Rock Mechanics and Engineering Geology, v. 2–3, p. 117–136; v. 4, p. 197–216.Google Scholar
  17. BROADBENT C.D. — KO K.C. (1972): Rheological aspects of rock slope failures,in Stability of rock Slopes: Proc. 13th Symposium on Rock Mechanics, Urbana, Illinois, 1971, Amer. Soc. Civil. Eng., — New York, p. 579–593.Google Scholar
  18. CAMPBELL R.H. (1975): Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California: U.S. Geol. Survey Prof. Paper 851, 51 p.Google Scholar
  19. CARRARA A. — MERENDA L. (1976): Landslide inventory in northern Calabria, southern Italy: Geol. Soc. America Bull. (in press).Google Scholar
  20. CLEVELAND G.B. (1971): Regional landslide prediction: Calif. Div. Mines and Geologyfor U.S. Dep’t. of Housing and Urban Development.Google Scholar
  21. CLEVELAND G.B. (1973): Fire+rain=mudflows, Big Sur 1972: California Geology, June 1973, p. 127–135.Google Scholar
  22. CLOSE U. — McCORMICK E. (1922): Where the mountains walked: Nat. Geog. Mag., v. 41, p. 445–464.Google Scholar
  23. COLTON R.B. and others (1975): Preliminary map of landslide deposits, Montrose 1° × 2° quadrangle, Colorado: U.S. Geol. Survey Misc. Field Studies Map ME-702. (Maps also available of Vernal, Grand Junction, Moab, Cortez, Craig, Leadville, Durango, Greeley, Denver, Pueblo, Trinidad, and La Junta quadrangles.)Google Scholar
  24. CRANDELL D.R. (1971): Postglacial lahars from Mount Rainier Volcano, Washington: U.S. Geol. Survey Prof. Paper 677.Google Scholar
  25. DAVIES W.E. (1967), Geologic hazards of coal refuse banks (abs): Geol. Soc. America Abst. vol., Annual meeting, New Orleans, p. 43.Google Scholar
  26. DAVIES W.E. (1968): Coal waste bank stability: Mining Congress Journal, v. 54, no. 7, p. 19–24.Google Scholar
  27. DAVIES W.E. (1974): Landslide susceptibility map of the Braddock 7–1/2’ quadrangle, Allegheny County and vicinity, Pennsylvania: U.S. Geol. Survey Open-File Rept. 74–273.Google Scholar
  28. DAVIES W.E. — BAILEY J.F. — KELLY D.B. (1972): West Virginia’s Buffalo Creek flood; a study of the hydrology and engineering geology: U.S. Geol. Survey Circ. 677, 32 p.Google Scholar
  29. DOBRY R. — ALVAREZ L. (1967): Seismic failures of Chilean tailings dams: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 93, no. SM6, p. 237–260.Google Scholar
  30. EINSTEIN H.H. — HIRSCHFELD R.C. (1973): Model studies on mechanics of jointed rock: Jour. Soil Mech. and Found, Div., Proc. Am. Soc. Civil Engrs., v. 99, no. SM3, p. 229–248.Google Scholar
  31. ERICKSEN G.E. — PLAFKER G. — CONCHA J.F. (1970): Preliminary report on the geologic events associated with the May 31, 1970, Peru earthquake: U.S. Geol. Survey Circ. 639, 25 p.Google Scholar
  32. EVANS J.R. — GRAY C.H. Jr. (1971): Analysis of mudslide risk in southern Ventura County, Calif: Calif. Div. Mines and Geologyfor U.S. Dep’t. of Housing and Urban Development.Google Scholar
  33. FLEYSHMAN S.M. (1970): Seli (mud streams): Gidrometeorologicheskoye Izdatel’stvo, Lenigrad, 352 p. (In Russian).Google Scholar
  34. FORSTER D.F. (1933): Treacherous slides delay Cloverdale-Hopland realignment: Pacific Street and Road Builder, v. XXXII, no. 2, p. 13–15.Google Scholar
  35. FRIZZELL V.A. Jr. (1974): Reconnaissance photointerpretation map of landslides in parts of the Hopland, Kelseyville, and Lower Lake 15-minute quadrangles, Sonoma County, California: U.S. Geol. Survey Misc. Field Studies Map MF-594.Google Scholar
  36. FRYDMAN S. — BEASLEY D.H. (1976): Centrifugal modelling of riverbank failure: Proc. Am. Soc. Civil Engrs., Jour. Geotechnical Eng. Div., v. 102, no. GT5, p. 395–409.Google Scholar
  37. GOODMAN R.E. (1976): Methods of geological engineering: West Publishing Co., 472 p.Google Scholar
  38. GOODMAN R.E. — BLAKE W. (1965): An investigation of rock noise in landslides and cut slopes: Rock Mechanics and Engineering Geology, Supplementum II, p. 88–93.Google Scholar
  39. GOODMAN R.E. — BLAKE W. (1966): Rock noise in landslides and slope failures: Highway Research Record No. 119, Highway Research Board of the Nat’l. Acad. Sciences-Nat’l. Res. Council, publication 1360, p. 50–60.Google Scholar
  40. GOODMAN R.E. — DUBOIS J. (1972): [1966] Duplication of dilatancy in analysis of jointed rocks: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 98, no. SM4, p. 399–422.Google Scholar
  41. GOODMAN R.E. — TAYLOR R.L. — BREKKE T.L. (1968): A model for the mechanics of jointed rock: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 94, no. SM3, p. 637–659.Google Scholar
  42. GUBIN I. Ye. (1960): Zakonomernosti seysmicheskikh proyavleniy na territorii Tadzhikistana (Regimen of seismic manifestations on the territory of Tadzhikistan), Academy of Sciences USSR Press.Google Scholar
  43. HADLEY J.B. (1964): Landslides and related phenomena accompanying the Hebgen Lake earthquake of August 17, 1959: U.S. Geol. Survey Prof. Paper 435, p. 107–138.Google Scholar
  44. HANSEN W.R. (1965): Effects of the earthquake of March 27, 1964, at Anchorage Alaska: U.S. Geol. Survey Prof. Paper 542-A, 68 p.Google Scholar
  45. HARDY H.R. (1959): Time-dependent deformation and failure of geologic materials: Third Symposium on Rock Mechanics, Golden, Colo. School of Mines Quart., v. 54, no. 3, p. 135–175.Google Scholar
  46. HAST N. (1958): The measurement of rock pressure in mines: Sveriges Geol. Undersokn., Arsbok, Ser. C., 52, no. 3, p. 1–183.Google Scholar
  47. HOEK E. — BRAY J.W. (1974): Rock slope engineering: The Institution of Mining and Metallurgy, London, 309 p.Google Scholar
  48. HOEK E. — LONDE P. (1974): Surface workings in rock: Proc. 3rd Int. Soc. for Rock Mech. Cong. v. 1, pt. A, p. 613–654.Google Scholar
  49. HOWARD A.D. (1965): Geomorphological systems — equilibrium and dynamics: Am. Jour. Sci. v. 263, p. 302–312.CrossRefGoogle Scholar
  50. HUTCHINSON J.N. — KOJAN, Eugene (1975): The Mayunmarca landslide of 25 April 1974, UNESCO Serial No. 3124, Paris, 23 p., photographs, maps.Google Scholar
  51. IDRISS I.M. — SEED H.B. (1966): The response of earthbanks during earthquakes: Soil mechanics and bituminous materials research laboratory, Univ. of Calif., Berkeley, 22 p.Google Scholar
  52. JAPAN SOCIETY OF LANDSLIDE ((1972): Landslides in Japan: The Japan Society of Landslide, National Conference of Landslide Control, 40 p.Google Scholar
  53. KAMENOV B. — ILIEV Il. — TSVETKOV St. — AVRAMOVA E. — SIMEONOVA C. (1973): Influence of the geological structure on the occurrence of different types of landslides along the Bulgarian Black Sea Coast: Geologia Applicata e Idrogeologia, v. 8, pt. 2, p. 209–220.Google Scholar
  54. KENNEDY B.A. — NIERMEYER K.E. (1970): Slope monitoring systems used in the prediction of a major slope failure at the Chuguicamata Mine, Chile:in Planning Open-Pit Mines, VAN RENSBURG, P.W.J., ed., Symposium at Johannesburg, 1970, South African Institute of Mining and Metallurgy, p. 215–225.Google Scholar
  55. KOBAYSHI, Kunio (1956): Periglacial morphology in Japan: Builetyn Peryglacjalny Nr. 4, p. 15–36 (Lodzkie towarzystwo naukowe societas scientarium lodziensis, Wydzial III, sectio III).Google Scholar
  56. KOMARNITSKII N.I. (1968): Zones and planes of weakness in rocks and slope stability: F.P. Savarenskii Laboratory of Hydrogeological Problems, Acad. of Sciences of the USSR, Moscow (Translated from Russian by Consultants Bureau, N.Y.).Google Scholar
  57. KOVACS W.D. — SEED H.B. — IDRISS I.M. (1971): Studies of seismic responses of clay banks: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 97, no. SM2, p. 441–455.Google Scholar
  58. KRSMANOVIC D. (1967): Initial and residual shear strength of hard rocks: Geotechnique, v. 17, p. 145–160.CrossRefGoogle Scholar
  59. KRSMANOVIC D. — LANGOF Z. (1964): Large scale laboratory tests of the shear strength of rock material; Rock Mechanics and Engineering Geology, Supplementum I, p. 20–30.Google Scholar
  60. LADANYI B. — ARCHAMBAULT G. (1969): Simulation of shear behavior of a jointed rock mass: Proc. 11th Symp. on Rock Mech., Berkeley, 1969, p. 105–125.Google Scholar
  61. LA ROCHELLE P. — CHAGNON J.Y. — LEFEBVRE G. (1970): Regional geology and landslides in the marine clay deposits of eastern Canada: Canadian Geotechnical Journal, v. 7, no. 2, p. 145–156.CrossRefGoogle Scholar
  62. LEE F.T. — NICHOLS T.C. — ABEL J.F. Jr. (1969): Some relations between stress, geologic structure, and underground excavation in a metamorphic rock mass west of Denver, Colorado: U.S. Geol. Survey Prof. Paper 650-C, p. C27–C132.Google Scholar
  63. LEGGET R.F. (1973): Cities and geology: McGraw-Hill, Inc., 624 p.Google Scholar
  64. LENSEN G.J. — SUGGATE R.P. (1968): Inangahua earthquake — preliminary account of the geology,in ADAMS, R.D., et al., Preliminary reports on the Inangahua earthquake, New Zealand, May 1968: New Zealand Dept. of Scientific and Industrial Research, Bull. 193, p. 17–36.Google Scholar
  65. LUMB, Peter (1975): Slope failures in Hong Kong: Quart. Jour. Engineering Geology, v. 8, p. 31–65.CrossRefGoogle Scholar
  66. McGILL J.T. (1959): Preliminary map of landslides in the Pacific Palisades area, City of Los Angeles, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-284, scale 1:4,800.Google Scholar
  67. MENCL V. — PETER P. — JESENÁK J. — ŠKOPEK J. (1965): Three questions on the stability of slopes: Int. Conf. on Soil Mech. and Found. Eng., 6th, Proc., v. II, p. 512–516.Google Scholar
  68. MILLER D.J. (1960): Giant waves in Lituya Bay, Alaska: U.S. Geol. Survey Prof. Paper 354-C, 86 p.Google Scholar
  69. MILLIES-LACROIX A. (1968): Les glissements de terrains, présentation d’une carte prévisionelle des mouvements de masse dans le Rif (Maroc septentrional): Mines et Géologie, no. 27, p. 45–54.Google Scholar
  70. MÜLLER Leopold (1963): Die Standfestigkeit von Felsböschungen als spezifisch geomechanische Aufgabe: Rock Mech. and Eng. Geol., v. 1, no. 1, p. 50–71.Google Scholar
  71. MÜLLER Leopold (1968): New consideration on the Vaiont slide: Felsmechanik u. Ingenieurgeol. 6. p. 1–91.Google Scholar
  72. MÜLLER Leopold (1974): Rock mass behavior — determination and application in engineering practice: advances in rock mechanics: Proc. 3rd Int. Soc. for Rock Mech. Cong., Denver, v. 1, pt. A, p. 205–215.Google Scholar
  73. MULLINEAUX D.R. — CRANDELL D.R. (1962): Recent lahars from Mount St. Helens, Washington: Geol. Soc. America Bull., v. 73, p. 855–870.CrossRefGoogle Scholar
  74. NEMČOK Arnold (1972): Gravitational slope deformation in high mountains: 24th Int. Geol. Cong., Montreal, Canada, Sec. 13, Proc., p. 132–141.Google Scholar
  75. NILSEN T.H. (1971): Preliminary photointerpretation map of landslide and other surficial deposits of the Mount Diablo area, Contra Costa and Alameda Counties, California: U.S. Geol. Survey Misc. Field Studies Map MF-310.Google Scholar
  76. NILSEN T.H. (1972): Preliminary photointerpretation map of landslides and other surficial deposits of parts of the Altamont and Carbona 15-minute quadrangles, Alameda County, California: U.S. Geol. Survey Misc. Field Studies Map MF-321.Google Scholar
  77. NILSEN T.H. — BRABB E.E. (1972): Preliminary photointerpretation and damage maps of landslide and other surficial deposits in northeastern San Jose, Santa Clara County, California: U.S. Geol. Survey Misc. Field Studies Map MF-361.Google Scholar
  78. NILSEN T.H. — BRABB E.E. (1973): Current slope-stability studies in the San Francisco Bay region: Jour. Research U.S. Geol. Survey, v. 1, no. 4, p. 431–437.Google Scholar
  79. OBERSTE-LEHN, Deane (1976): Slope stability of the Lomerias Muertas area, San Benito County, California, PhD. dissertation, Stanford Univ., Palo Alto, California. 186 p.Google Scholar
  80. ONODERA T. — YOSHINAKA R. — KAZAMA H. (1974): slope failures caused by heavy rainfall in Japan: Proc. Int. Cong. (2nd) Int. Assoc. Eng. Geologists, Brazil, v. 2, p. V-11.1–V-11.10.Google Scholar
  81. OSTERWALD F.W. (1961): Deformation and stress distribution around coal mine workings in Sunnyside No. 1 Mine, Utah: U.S. Geol. Survey Prof. Paper 424-C, p. C349-C353.Google Scholar
  82. PAIN C.F. — BOWLER J.M. (1973): Denudation following the November 1970 earthquake at Madang, Papua New Guinea: Z. Geomorph. N.F., supp. Bd. 18, p. 92–104.Google Scholar
  83. PATTON F.D. (1966): Multiple modes of shear failure in rock: Proc. 1st Cong. Internat. Soc. for Rock Mechanics, Lisbon, v. 1, p. 509–513.Google Scholar
  84. RADBRUCH D.H. — CROWTHER K.C. (1973): Map showing areas of estimated relative amounts of landslides in California: U.S. Geol. Survey Map I-747.Google Scholar
  85. RADBRUCH-HALL D.H. (1975): Large-scale gravitational creep of rock masses on slopes (abs.): Geol. Soc. America, Abstracts with programs, v. 7, no. 7, p. 1237.Google Scholar
  86. RADBRUCH-HALL D.H. (1976): Maps showing areal slope stability in part of the northern Coast Ranges, California: U.S. Geol. Survey Map I—982 (in press).Google Scholar
  87. RADBRUCH-HALL D.H. and others (1976): Landslide overview map of the conterminous United States: U.S. Geol. Survey Map MF—771.Google Scholar
  88. RADBRUCH-HALL D.H. — VARNES D.J. — COLTON R.B. (1976): Gravitational spreading of steep-sided ridges (“Sackung”) in Colorado: U.S. Survey Jour. Research (in press).Google Scholar
  89. RADBRUCH-HALL D.H. — VARNES D.J. — SAVAGE W.Z. (197_): Gravitational spreading of steep-sided ridges (“Sackung”) in western United States: Presented at 25th Int. Geol. Cong., Australia (in press).Google Scholar
  90. RHODES D.C. (1968): Landsliding in the mountainous humid tropics: a statistical analysis of landmass denudation in New Guinea: M.A. Thesis, Dept. of Geography, University of Kansas, Lawrence, Kansas (Technical Report No. 4, Office of Naval Research, Geography Branch).Google Scholar
  91. RICHTER C.F. (1968): Elementary seismology: W.H. Freeman and Co., San Francisco, 768 p.Google Scholar
  92. RUSSEL I.C. (1900): A preliminary paper on the geology of the Cascade Mountains in northern Washington: U.S. Geol. Survey 20th Ann. Report, 1898–99, Part II, p. 83–210.Google Scholar
  93. RYBAŘ J. — NEMČOK A. (1968): Landslide investigations in Czechoslovakia: Proc. of 1st Session Int. Assoc. Eng. Geology, held during the 23rd Int. Geol. Congress, Prague, p. 183–198.Google Scholar
  94. SAITO M. (1965): Forecasting the time of occurrence of a slope failure: Int. Conf. on Soil Mech. and Found. Eng., 6th, Proc., v. II, p. 537–541.Google Scholar
  95. SAITO M. (1972): On forecasting slope failure: Soils and Foundations, v. 20, no. 2, p. 13–19 (in Japanese)Google Scholar
  96. SCHOLZ Christopher, (1970): The role of microfracturing in rock deformation: Proc. 2nd Cong. of the Int. Soc. for Rock Mech., Beograd, v. I, p. 323–327.Google Scholar
  97. SEED H.B. (1967): Slope stability during earthquakes: Jour. Soil Mech. and Found. Div. Proc. Am. Soc. Civil Engrs., v. 93, no. SM4, p. 299–323.Google Scholar
  98. SEED H.B. — IDRISS I.M. — LEE K.L. — MAKDISI F.I. (1975): Dynamic analysis of the slide in the Lower San Fernando Dam during the earthquake of February 9, 1971: Jour. Geotechnical Engineering Div., Proc. Am. Soc. Civil Engrs., v. 101, no. GT 9, p. 889–911.Google Scholar
  99. SEED H.B. — WILSON S.D. (1967): The Turnagain Heights landslide, Anchorage, Alaska: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 93, no. SM 4, p. 325–353.Google Scholar
  100. SILGADO F., ENRIQUE (1951): The Ancash, Peru earthquake of November 10, 1946: Bull. Seismol. Soc. America, v. 41, no. 2, p. 83–100.Google Scholar
  101. SIMONETT D.S. (1967): Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New JENNINGS, J.N., and MABUTT, J.A. eds. Landform studies from Australia and New Guinea: Cambridge University Press, p. 64–84.Google Scholar
  102. SKEMPTON A.W. (1964): Long-term stability of clay slopes: Geotechnique, v. 14, no. 2, p. 77–101.CrossRefGoogle Scholar
  103. STACEY T.R. (1975): The behavior of two- and three-dimensional model rock slopes: Quart. Jour. Engineering Geology, v. 8, p. 67–72.CrossRefGoogle Scholar
  104. TABOR Rowland W. (1971): Origin of ridge-top depressions by large-scale creep in the Olympic Mountains, Washington: Geol. Soc. America Bull., v. 82, p. 1811–1822.CrossRefGoogle Scholar
  105. TER-STEPANIAN G. (1974): Depth creep of slopes: Int. Assoc. Eng. Geology Bull. no. 9, p. 97–102.Google Scholar
  106. TERZAGHI K. (1962): Stability of steep slopes on hard unweathered rock: Geotechnique, v. 12, p. 251–270.CrossRefGoogle Scholar
  107. TILLING R.I. — KOYANAGI N.Y. — HOLCOMB R.T. (1975): Rockfall seismicity-correlation with field observation, Makaopuhi Crater, Kilauea Volcano, Hawaii: U.S. Geol. Survey Jour. Research, v. 3, no. 3, p. 345–361.Google Scholar
  108. TILLING R.I. and others (1976): Earthquake and related catastrophic events, island of Hawaii, November 29, 1975: a preliminary report: U.S. Geol. Survey Circular (in press).Google Scholar
  109. U.S. CORPS OF ENGINEERS (1973): Interim report on foundation treatment — Laurel Dam: foundation treatment in stress relieved valley: U.S. Army Engineer District, Nashville, Corps of Engineers, Nashville, Tennessee, 18 p.Google Scholar
  110. TORRANCE J.K. (1975): On the role of chemistry in the development and behavior of the Sensitive marine clay of Canada and Scandinavia: Canadian Geotech. Jour., v. 17, p. 326–335.CrossRefGoogle Scholar
  111. U.S. GEOLOGICAL SURVEY (1975): Geological Survey Research. 1975, U.S. Geol. Survey Prof. Paper 975, p. 269.Google Scholar
  112. WATSON R.A. — WRIGHT H.E. Jr. (1969): The Saidmarreh landslide, Iran, Geol. Soc. America Spec. Paper 123, p. 115–139.Google Scholar
  113. YAMAGUCHI S. (1972): Forecasting methods and its technical points at issue: Proc. First Internat. Symposium on Landslide Control, October 1972, The Japan Society of Landslide and National Conference of Landslide, p. 167–174 (in Japanese and English).Google Scholar
  114. YEEND W.E. (1969): Quaternary geology of the Grand and Battlement Mesas area, Colorado: U.S. Geol. Survey Prof. Paper 617, 50 p.Google Scholar
  115. YEEND W.E. (1973): Slow-sliding slumps, Grand Mesa, Colorado: The Mountain Geologist, v. 10, no. 1, p. 25–28.Google Scholar
  116. YOUD T.L. — HOOSE S.N. (1976): Liquefaction during 1906 San Francisco earthquake: Jour. of the Geotechnical Eng. Div. Proc. Am. Soc. Civil Engrs., vol. 102, no. GT 5, p. 425–439.Google Scholar
  117. ZISCHINSKY Ulf (1966): On the deformation of high slopes: 1st Cong. Int. Soc. of Rock Mech., Proc., v. 2, Lisbon, p. 179–185.Google Scholar
  118. ZISCHINSKY Ulf (1969): Über Sackungen: Rock Mechanics, v. 1, p. 30–52.CrossRefGoogle Scholar
  119. ZOLOTAREV G.S. (1974): Geological principles of slump and landslide development — foundations of the theory of their study and prediction: Vestnik Moskovskogo Universiteta, Geologiya, v. 29, no. 4, pp. 3–19 (published in English by Allerton Press, Inc.)Google Scholar

Copyright information

© International Association of Engineering Geology 1976

Authors and Affiliations

  • Radbruch-Hall D. H. 
    • 1
  • Varnes D. J. 
    • 1
  1. 1.U.S. Geological Survey, Geol. Div. Eng. Geol. BranchMenlo ParkU.S.A.

Personalised recommendations