Advertisement

Quantitative characteristics of clays fabrics using the method of magnetic anisotropy

  • Osipov Y. B. 
  • Sokolov B. A. 
Formation Of Clays And Their Engineering-Geological Properties

Abstract

To study the three-dimensional texture of clays the method of magnetic anisotropy has some significant advantages over the other existing methods : it makes possible to estimate bulk texture quantitatively on undisturbed samples of natural moisture content and density ; in addition to that, the procedure of preparing the samples is much simpler than in all other cases.

The authors made an attempt to apply the method of magnetic anisotropy to solve the task of altering the fabric of clay pastes under the influence of such deformations as uniaxial compression, consolidation, plane shear and three-dimensional shear.

The studied samples were : a montmorillonite clay from Georgia, a kaolinite clay from Ukraine, an hydromica clay from Leningrad.

The authors established the main regularities of textural reconstruction which are influenced by the deformations of consolidation and shear on pastes of three monomineral clays in different conditions of deformation. The relation between the fabric and the value of the active stress has been shown.

The specific features of textural reconstruction have been revealed depending on the mineralogical composition of the clay paste.

Keywords

Kaolinite Magnetic Anisotropy Plane Shear Particle Orientation Kaolinite Clay 

Résumé

Pour l’étude de la texture en trois dimensions des argiles, la méthode de l’anisotropie magnétique présente, par rapport à toutes les autres méthodes existantes, plusieurs avantages appréciables : elle permet d’évaluer quantitativement la texture d’ensemble d’échantillons intacts présentant leur humidité et leur densité naturelles ; en outre la technique de préparation des échantillons est beaucoup plus simple que dans tous les autres cas.

Les auteurs ont essayé d’appliquer la méthode d’anisotropie magnétique pour étudier les modifications de structure des argiles sous l’influence de déformations telles que : compression uniaxiale, consolidation, cisaillement dans le plan ou dans l’espace.

Les échantillons étudiés étaient : une argile montmorillonitique de Géorgie, une argile kaolinitique d’Ukraine et une argile illitique de Léningrad.

Les auteurs ont établi les principales règles de reconstruction de la texture après sa déformation par consolidation et par cisaillement. Ils ont montré les relations entre la structure et la grandeur de la force agissante.

Il appert que les caractères spécifiques de la reconstruction de la texture dépendent de la composition minéralogique de l’argile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. (1).
    Raitburd T.M. — Investigation of clayey rock microfabric with the help of the X-ray-structural method. Thesis, Moscow, 1958.Google Scholar
  2. (2).
    Ponomaryov V.V. — Investigation of deformation fabric of water-saturated clayey rocks with the help of the X-ray diffractometer method. Thesis, 1971.Google Scholar
  3. (3).
    Martin R.T. — Quantitative fabric of wet kaolinite. In: « Proc. of the 14th National Conference on clays and clay minerals », 1966.CrossRefGoogle Scholar
  4. (4).
    Ising. — On the magnetic properties of varved clay.Ann. Mat. Astr., 29A.I, No 5, 1943.Google Scholar
  5. (5).
    Balsley J.R., Baddington A.F. — Magnetic susceptibility, anisotropy and fabric of some Adikondac granites and orthogneisses.Am. J. Sci., 1960, 258-A.Google Scholar
  6. (6).
    Stone D.V. — Anisotropic magnetic susceptibility measurements on a phonolite and a folded metamorphic rock.Geophys. J. Roy. Astron. Soc. Vol. 7, No 3, 1963.CrossRefGoogle Scholar
  7. (7).
    Stacey F.D. — Magnetic anisotropy of igneous rocks.J. Geophys. Res., 65, 1960 b.CrossRefGoogle Scholar
  8. (8).
    Grabovsky M.A. — Magnetic anisotropy of rock.Trans. (Izv.) U.S.S.R. Acad. Sci. Geophys. Ser., No 4, 1956.Google Scholar
  9. (9).
    Graham J.W. — Magnetic susceptibility an unexploited petrofabric element.Bull. Geol. Soc. Am., 65. 1954.Google Scholar
  10. (10).
    Ueda S., Fuller M.D., Belshe J., Girdler R.W. — Anisotropy of magnetic susceptibility of rocks and minerals.J. Geophys. Res., 68, 1963.Google Scholar
  11. (11).
    Granar L. — Magnetic measurements on Swedish varved sediments.Arkiv för Geofysic., Band. 3. Nr 1. 1959.Google Scholar
  12. (12).
    Fuller M.D. — Magnetic anisotropy and paleomagnetism.J. of Geophys Res., Vol. 68. No. 1. 1963.Google Scholar
  13. (13).
    Runcorn S.K. — The anisotropy of magnetism of rocks. « Methods in Paleomagnetism » Elsevier. Amsterdam-London. New-York. 1967.Google Scholar
  14. (14).
    Osipov J.B. — On the evaluation of three-dimensional texture of rocks (with uniaxial compression and consolidation of clay pastes). Moscow Univ. Herald. Geol. Ser. No 2. 1969. Vest. Mosk. Un.Google Scholar

Copyright information

© International Association of Engineering Geology 1972

Authors and Affiliations

  • Osipov Y. B. 
    • 1
  • Sokolov B. A. 
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations