Advertisement

Experimental study on the reactivity of aggregate in concrete

  • Harada Michiaki
  • Hagiwara Yoshikazu
Article

Abstract

The specimens mixed with cement and various crushed minerals (149-74 μm) were cured at 80°C in saturated steam for 28–180 days as the basic study for cement-aggregate reactions. Quartz and feldspars (microcline, albite and anorthite) reacted with the cement paste, whereas hornblende, augite and olivine did not react. Anorthite was the most reactive and the reactivity of quartz, microcline and albite were almost the same as each other. Jennite was formed by cement-quartz reaction and 11 Å tobermorite, CSH (II) and hydrogarnet were formed by cement-anorthite reaction. The compressive strength of the specimens in which aggregates reacted to cement paste increased as the curing time was prolonged.

Keywords

Compressive Strength Olivine Portland Cement Tobermorite Reaction Conversion 

Etude experimentale de la reactivite des granulats a beton

Résumé

Un mélange de ciment et de minéraux broyés a été traité à la vapeur saturée à 80 degrés pendant 28–180 jours comme pour les recherches de base pour l'étude de la réaction entre le ciment et les granulats. Quartz et feldspath (microcline, albite et anorthite) réagissent avec la pâte de ciment. Mais la hornblende, l'augite et l'olivine ne réagissent pas. De la Jennite a été formée par la réaction entre la pâte de ciment et le quartz. De la tobermorite à 11 Å (CSH II) et de l'hydrogrenat ont été formés par la réaction entre la pâte de ciment et l'anorthite. La résistance à la compression a augmenté dans le temps pour les mélanges de ciment avec le quartz et les feldspaths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AARDT J.H.P. & VISSER S. (1977a).Cement concrete Research, 7, p 39–44.CrossRefGoogle Scholar
  2. AARDT J.H.P. & VISSER S. (1977b):ibid., 7, p 643–648.CrossRefGoogle Scholar
  3. AARDT J.H.P. & VISSER S. (1978):ibid., 8, p 677–682.CrossRefGoogle Scholar
  4. BARNES B.D., DIAMOND S. and DOLCH W.L. (1978):ibid., 8, p 233–244.CrossRefGoogle Scholar
  5. BARNES B.D., DIAMOND S. and DOLCH W.L. (1979):Journal of The American Ceramic Society 62 [1–2], p 21–24.CrossRefGoogle Scholar
  6. COLE W.F., LANCUCKI C.J. and SANDY M.J. (1981):Cement Concrete Research, 11, p 443–454.CrossRefGoogle Scholar
  7. GARD J.A. & TAYLOR H.F.W. (1976):ibid. 6, p 667–678.CrossRefGoogle Scholar
  8. HARA N. & INOUE N. (1976): Yogyo-Kyokai-Shi, 84, p 181–185.CrossRefGoogle Scholar
  9. HARA N., INOIE N. and MATSUDA O. (1979):ibid., 87, p 86–94.CrossRefGoogle Scholar
  10. HARA N. & INOUE N. (1980):Cement Concrete Research, 10, p 677–682.CrossRefGoogle Scholar
  11. LANGTON C.A. & ROY D.M. (1980): Proceeding of 7th International. Symposium on the Chemistry of Cement (Paris), Sub-Theme VII, p 127–132.Google Scholar
  12. MASO J.C. (1980): Proceeding of 7th International. Symposium on the Chemistry of Cement (Paris), Sub-Theme VII, Sub-Theme VII-1, p 3–15.Google Scholar
  13. MITSUDA T., HIKIJI Y. and MURACHI M. (1970):Semento-Gifutsu-Nenpo, 24, p 76–81.Google Scholar
  14. WAY S.J. and COLE W.F. (1982):Cement Concrete Research, 12, p 611–617.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1980

Authors and Affiliations

  • Harada Michiaki
  • Hagiwara Yoshikazu
    • 1
  1. 1.Department of Mineral Industry, School of Science and EngineeringWaseda University 3-4-1TokyoJapan

Personalised recommendations