Feldspar and mica. Key minerals for fine aggregate quality

  • Danielsen Svein Willy
  • Rueslåtten Håkon G. 


Research on the aggregate-concrete interaction has proved feldspar and mica to be key minerals for concrete quality.

Feldspars are predominant minerals in most Norwegian aggregates. A relation has been found between the strength of cement mortars and the type and condition of the feldspars present. Especially, the degree of feldspar alteration (saussurite, sericite) appears to be a primary factor for mortar strength.

Concerning mica, a dependence on the weathering conditions has been demonstrated, naturally occurring mica proving less harmful to concrete properties than mica in crushed aggregates. A geochemical interpretation of this includes changes in cation exchange capacity resulting from alteration and weathering.


Cement Mortar Cement Mineral Crushed Aggregate Mortar Strength Predominant Mineral 

Feldspaths et micas, une cle pour la qualite des sables a beton


Les recherches sur l'interaction ciment-granulat ont montré que les feldspaths et les micas sont la clé de la qualité des bétons.

Les feldspaths dominent dans les granulats norvégiens. Une relation a été trouvée entre la résistance des mortiers et le degré d'altération des feldspaths.

Le comportement des micas dépend des conditions d'altération et ceux libérés par le concassage sont nuisiblses pour les bétons.

Ce phénomène s'explique géochimiquement par la modification de la capacité d'échange des cations résultant de l'altération.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DANIELSEN S.W., MOKSNES J. (1978): “Evaluation of Aggregates for Offshore Concrete Platforms.” Proc. 3rd Int. Congr. I.A.E.G. Madrid 1978, Vol. 2, pp. 97–108.Google Scholar
  2. [2]
    DANIELSEN S.W. (1979): “Concrete Aggregates/Mineral Surfaces. An Investigation of the Influence of Aggregate Mineralogy on Concrete Properties.” Thesis. Univ. of Trondheim, The Norwegian Institute of Technology, Eng. Geol. Dept., 635 pp. (In Norwegian with English Summary).Google Scholar
  3. [3]
    DANIELSEN S.W. (1981): “Visual Quality Classification of Sand” (in Norwegian). Rep. No. 1 from project “Concrete Aggregate/Quality Classification”. NOTEBY-report 21004-1.Google Scholar
  4. [4]
    DANIELSEN S.W., RUESLÅTTEN H.G. (1983): “Aggregate Properties Related toIn-Situ Storing Conditions” (in Norwegian). Rep. No. 2 from project “Concrete Aggregates/Quality Classification”. NOTEBY-report 21004-2.Google Scholar
  5. [5]
    DEWAR J. F. (1963): “Effect of mica in the fine aggregate on the water requirement and strength of concrete.” Techn. Rep. Cem. Concr. Assoc., London.Google Scholar
  6. [6]
    GJØRV O. E. (1978): “Evaluation of sand for concrete production.” Intern. Symp. on Aggregates and Fillers, RILEM, Budapest, October 1978.Google Scholar
  7. [7]
    HOON R.C., SHARMA K.R. (1961): “The selection, processing and specification on aggregates for concrete for large dams, effect of employing micaceous sand as fine aggregates fraction on the properties of cement, mortar and concrete.” Septième Congrès des Grands Barrages, Rome.Google Scholar
  8. [8]
    HOON R.C., VENKATESW ARLU V. (1962): “Benefication of micaceous sands for use as fine aggregates.”Indian Concrete Journal, July 1962.Google Scholar
  9. [9]
    LYUBIMOVA T.Yu. PINUS E.R. (1962): “Crystallization structure in the contact zone between aggregate and cement in concrete.”Colloid Journal Vol. 24, No. 5, 1962.Google Scholar
  10. [10]
    LYUBIMOVA T. Yu., REBINDER P.A. (1964): “Pecularities of the crystallization hardening of cement in the zone of contact with various solid phases (fillers).”Doklady Akademii Nauk SSSR, Vol. 163, No. 6, 1965.Google Scholar
  11. [11]
    MATHER K. (1973): “Examination of cores from four highway bridges in Georgia.” U.S. Army Eng. Waterways Exp. Corps Engn. Vicksburg, Miss. Misc., Pap. C73-11.Google Scholar
  12. [12]
    MULLER O.H. (1971): “Some aspects of the effect of micaceous sand in concrete.”The Civ. Eng. South Africa, Sept. 1971.Google Scholar
  13. [13]
    ROEDER A.R., CHAPMAN G.P. (1970): “The effects of sea shells in concrete aggregates”, Concrete.Google Scholar
  14. [14]
    RUESLÅTTEN H. G., JØRGENSEN P. (1977): “Mineralogical composition and changes due to podzol weathering in tills from Southern Norway.” Proc. 2nd Int. Symp. on Water-Rock Interact., Strasbourgh., Vol. 1, pp. 184–194.Google Scholar
  15. [15]
    THORVALDSON T. (1956): “Effect of chemical nature of aggregate on strength of steam cured Portland cement mortars.”Journ. Amer. Concr. Inst. 52 (1956), pp. 771–780.Google Scholar
  16. [16]
    UR'EV N.B., MIKHALLOW N. V., REBINDER P. A. (1965): “The structure forming role of solid surfaces in the adhesive action of water-cement suspensions.”Doklady Akademii Nauk SSSR 164 (1965): 3, pp. 626–628.Google Scholar

Copyright information

© International Association of Engineering Geology 1980

Authors and Affiliations

  • Danielsen Svein Willy
    • 1
  • Rueslåtten Håkon G. 
    • 2
  1. 1.NOTEBY, Norsk Teknisk Byggekontroll A/S. (Partner of Norconsult A/S)Norway
  2. 2.Department of GeologyUniversity of Trondheim, The Norwegian Institute of TechnologyNorway

Personalised recommendations