The application of spectral analysis to rock quality evaluation for mapping purposes

  • Young R. P. 
  • Coffey J. R. 
  • Hill J. J. 
IAEG Symposium “Engineering Geological Mapping for Planning, Disign and Construction in Civil Engineering”, Newcastle Upon Tyne, 3–6 September 1979 THEME 4b Land and Sea-floor Geophysical Mapping for Engineering Structures Contributions


The technique developed uses the spectral signature or Fourier Transform of a signal to gain information about the rock mass. This process enables rock masses to be characterised by observing and quantifying the degree by which discontinuities and other rock mass characteristics preferentially filter the various frequency components of an induced signal. The initial analysis has concentrated on using the technique to investigate the dependence of attenuation spectra on discontinuity characteristics. This has been achieved by correlating statistically significant direct parameters with attenuation spectra from the same rock masses. The preliminary results given in the paper indicate the potential usefulness of the technique for characterising discontinuous rock.


Rock Mass Seismic Signal Rock Bolt Paper Tape Schmidt Hammer 

L'application de l'analyse spectrale a l'évaluation de la qualité des roches en vue de la cartogrpahie


La technique qui a été mise au point utilise la signature spectrale ou transformation de Fourier d'un signal, pour obtenir l'information sur la masse rocheuse. Ce procédé permet de caractériser les masses rocheuses par l'observation et la quantification du degré auquel les discontinuités et autres caractères des masses rocheuses filtrent préférenciellement les diverses fréquences qui composent un signal. L'analyse initiale s'est concentrée sur l'emploi de cette technique pour chercher les relations entre spectre d'atténuation et caractères de discontinuité. Le résultat de cette recherche est une corrélation statistique entre paramètres directs significatifs et spectres d'atténuation pour les mêmes masses rocheuses. Les premiers résultats donnés dans cet article font apparaître l'utilité potentielle de cette technique pour caractériser les roches discontinues.


  1. BARTON N.—LIEN R.—LUNDE J. (1974): Engineering Classification of Rock Masses for the Design of Tunnel Support, Norwegian Geotechnical Institute Technical Report.Google Scholar
  2. BIENIAWSKI Z.T. (1973): Engineering Classification of Jointed Rock Masses. Trans. S. African Inst. Civil Engineers, 15, 12, 335–344.Google Scholar
  3. BORN W.T. (1941): The Attenuation Constant of Earth Materials. Geophysics, 6, 132–148.CrossRefGoogle Scholar
  4. DA GAMA C.D. (1971): Studying Rock Fractures by Wave Attenuation Methods. Symp. Soc. Intern. Mécanique des Roches, Nancy, 1–2.Google Scholar
  5. DEARMAN W.R. (1976): Weathering Classification in the Characterisation of Rock: a Revision. Bull. Int. Ass. Engng Geol., No. 13, 123–127.CrossRefGoogle Scholar
  6. DUNCAN N. (1966): Excavation Assessments: the Physical and Mechanical Properties of Rock Materials. Muck Shift. Publ. Wks. Dig (Nov.), 60–66.Google Scholar
  7. GOODMAN R. (1976): Methods of Geological Engineering in Discontinuous Rock.Google Scholar
  8. GRAINGER P.—McMANN D.M.—GALLOIS R.W. (1973): The Application of the Seismic Refraction Technique to the Study of the Fracturing of the Middle Chalk at Mundford Norfolk. Géotechnique, 23, No. 2, 219–232.CrossRefGoogle Scholar
  9. GUPTA R.R.—BARKHOUDARIAN S.—STEINBERG R.F. (1972): Seismic Determination of Geological Discontinuities of Rapid Excavation. Proc. North American Rapid Excavation and Tunnelling Conf., 217–233.Google Scholar
  10. JOHN K.W. (1970): Civil Engineering Approach to Evaluate the Strength of Regularly Jointed Rock. Proc. 11th Symp. on Rock Mech. (AIME), 69–82.Google Scholar
  11. LAKSHMANAN J. (1971): Seismic Logging: a Means to Investigate Rock Fissuration. Symp. Soc. Inten. Mécanique des Roches, Nancy, 1–20.Google Scholar
  12. LYKOSHIN A.G.—VASCHENKO S.G.—MIKHAILOV A.D. —SAVITCH A.I.—KOPTEV V.J. (1971): Investigation of Rock Jointing by Seismo-Acoustic Methods. Symp. Soc. Intern. Mécanique des Roches, Nancy, 1–19.Google Scholar
  13. McDONAL F.J. et al. (1958): Attenuation of Shear and Compressional Waves in Pierre Shale. Geophysics, 23, 421–439.CrossRefGoogle Scholar
  14. MOSSMAN R.W.—HEIM G.G. (1972): Seismic Exploration applied to Unterground Excavation Problems. Proc. N. Amer. Rapid Excavation and Tunnelling Conf., Chicago, 169–191.Google Scholar
  15. NIINI H.—MANUNEN T.(1970): Seismic Soundings as an Indicator of Engineering Geologic Properties of Bedrock in Finland. Proc. 1st Int. Cong. Engng Geol. Paris, 753–761.Google Scholar
  16. ONODERA T.F. (1962): Dynamic Investigation of Foundation Rocks in situ. 5th Symp. on Rock Mechanics, Minnesota, 517–533.Google Scholar
  17. PRIEST S.D.—HUDSON J.A. (1976): Discontinuity Spacing in Rock. Int. Jour. Rock Mech. Min. Sci. & Geomech. Abst. 13, 135–148.CrossRefGoogle Scholar
  18. RICKER N. (1944): Wavelet Function and their Polynomials. Geophysics, 9, 314–323.CrossRefGoogle Scholar
  19. SCHNEIDER B. (1967): Contribution a l'étude des Massifs de Fondation de Barrages. Trans. du Labor. de Géol. de la Fac. des Sci. de Grenoble, 1–235.Google Scholar
  20. SCOTT J.H.—LEE F.T.—CARROLL R.D.—ROBINSON C.S. (1968): The Relationship of Geophysical Measurements to Engineering and Construction Parameters in the Straight Creek Tunnel Pilot Bore, Colorado, 1–30.Google Scholar

Copyright information

© International Association of Engineering Geology 1979

Authors and Affiliations

  • Young R. P. 
    • 1
  • Coffey J. R. 
    • 1
  • Hill J. J. 
    • 2
  1. 1.Department of MiningSunderland PolytechnicTyne and WearU.K.
  2. 2.Department of Electrical, Electronic and Control EngineeringSunderland PolytechnicTyne and WearU.K.

Personalised recommendations