Advertisement

General report, session I: Engineering properties of carbonate rocks

  • Dearman W. R. 
Symposium on Engineering Geolgoical Problems of Construction on Soluble Rocks

Abstract

After reviewing the geological classification of carbonate rocks, a method of describing carbonate rocks for engineering purposes is developed following the recommendations set out by the I.A.E.G. Mapping Commission. Particular attention is paid to the details of the weathering profile developed on carbonate rocks.

The engineering classification of carbonate rocks is based on both the engineering behaviour of the rock as a material and in the mass. Physical properties, including strength and deformation characteristics, are used to determine a modulus ratio for a wide range of limestones including the English chalk. In addition to rock material properties, and engineering classification of the rock mass has to take account of structure, discontinuities, and details of the weathering profile.

Assessment of rock mass properties requiresin situ testing to determine deformation characteristics. If the usually limited amount of data on such quantitativein situ properties is related to other measures of rock quality, then engineering geological mapping can be used to extend the applicability of the limitedin situ data to a whole site. RQD has been related to the compressibility of the rock mass, and a rock mass factor has been proposed that links the deformability of the rock material to that of the rock mass.

Rock mass classifications for large underground openings may be used with limestones.

Engineering problems associated with carbonate rocks are briefly reviewed, as are the properties of limestones as a building stone and as aggregate.

Keywords

Dolomite Rock Mass Carbonate Rock Chalk Unconfined Compressive Strength 

Rapport general, session I: Proprietes geotechnique des roches carbonatees

Résumé

Après avoir revu la classification géologique pour les roches carbonatées, on développe une méthode décrivant les roches carbonatées pour des ingénieurs. On suit les recommandations de la commission de l'AIGI sur la cartographie. On fait particulièrement attention aux détails des profils d'altération se développant sur les roches carbonatées.

La classification géotechnique des roches carbonatées est basée sur le comportement des roches aussi bien comme matériau que comme massif. Les propriétés physiques—la résistance et la déformation y compris—sont utilisées pour déterminer un rapport de module pour un grand nombre de calcaires, y compris la craie anglaise. En plus des propriétés des roches en tant que matériau une classification des massifs de roches à but géotechnique doit considérer la structure, les discontinuités et les détails des profils d'altération.

L'estimation des propriété ses massifs rocheux exige des expériencesin situ pour déterminer les caractéristiques de déformation. Si l'on met en rapport la quantité des informations sur ces propriété, généralement limitée, avec d'autres mesures sur la qualitè des roches, la cartographie géotechnique peut être utilisée, pour étendre l'applicabilité des informations ponctuelles obtenuesin situ au site en général. Le RQD a été relié à la compressibilité du massif rocheux; on a proposé un facteur de massif qui rellie la déformabilité du matériau des roches à celle du massif.

La classification des massifs rocheux pour de grandes cavités souterraines peut être utilisée pour des calcaires.

Les problèmes de l'ingénieur concernant les roches carbonatées sont brièvement passés en revue ainsi que les propriétés des calcaires come pierre à bâtir et comme agrégat.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AL-JASSAR, S. H. and HAWKINS, A. B. (1979): Geotechnical properties of the Carboniferous Limestone of the Bristol area. The influence of petrography and chemistry. Proc. 4th Int. Cong., Rock Mechanics, Monteux (Suisse), 1, 3–13.Google Scholar
  2. Anon. (1969): Specification for road and bridge works. U.K. Department of the Environment. H.M.S.O. London.Google Scholar
  3. Anon. (1970): The logging of rock cores for engineering purposes. Geological Society Engineering Group Working Party. Q. J1 Engng. Geol., 3, 2–24.Google Scholar
  4. Anon. (1972a): The preparation of maps and plans in terms of engineering geology. Q.J1 Engng Geol.,5, 293–281.Google Scholar
  5. Anon. (1972b): Code of Practice for Foundations. CP2004: 1872. British Standards Institution, London, pp. 158.Google Scholar
  6. Anon. (1977): The description of rock masses for engineering purposes. Report by the Geological Society Engineering Group Working Party. QJ1 Engng Geol., 10, 355–388.Google Scholar
  7. Anon. (1979): Classification of rocks and soils for engineering geological mapping. Part 1: Rock and soil materials. IAEG Bull. 19, 364–371.Google Scholar
  8. Anon. (1981a) British Standard 5930: Site investigations. London. British Standards Institution. pp. 147.Google Scholar
  9. Anon. (1981b): Rock and soil description for engineering geological mapping. Report by the Commission on Engineering Geological Mapping. Bull. Int. Assoc. Engng Geol. 24.Google Scholar
  10. ASHURST, J. and DIMES, F. G. (1977): Stone in building. Architectural Press, London, pp. 105.Google Scholar
  11. ASTM. Standard specification for building stone. ASTM C568-79. Amer. Soc. Testing materials. 32–33.Google Scholar
  12. BARTON, N., LIEN, R. and LUNDE, J. (1974): Engineering classification of rock masses for the design of tunnel support. Norwegian Geotechnical Institute Publication No. 106.Google Scholar
  13. BELL, F. G. (1981a): Engineering Properties of Soils and Rocks. Butterworths, London. pp. 149.Google Scholar
  14. BELL, F. G. (1981b): A survey of the physical properties of some carbonate rocks. Bull. Int. Assoc. Engng Geol., 24.Google Scholar
  15. BIENIAWSKI, Z. T. (1973): Engineering Classification of jointed rock masses. The Civil Engineer in South Africa, 335–343.Google Scholar
  16. BIENIAWSKI, Z. T. (1976): Rock mass classification in rock engineering. Proc. Symposium Exploration for Rock Engineering, Johannesburg. 1, 97–106.Google Scholar
  17. BIENIAWSKI, Z. T. (1978): Determining rock mass deformability: experience from case histories. Int. J1 Rock Mech. Min. Sci. & Geomech., 15, 237–247.CrossRefGoogle Scholar
  18. BIENIAWSKI, Z. T. (1979): The geomechanics classification in rock engineering applications. Proc. 4th Int. Cong. Rock Mechanics, Montreux (Suisse), 1, 41–48.Google Scholar
  19. BRACE, W. F. (1964): Brittle fracture of rocks. State of stress in the Earth's crust. Ed. W. R. Judd, Elsevier, New York, 111–174.Google Scholar
  20. BRITISH GEOTECHNICAL SOCIETY. (1975): Settlement of structures. Pentech Press, London. 811 pp.Google Scholar
  21. BRITISH STANDARD 882, 1201 Part 2. (1973): Aggregates from natural sources for concrete (including granolithic).Google Scholar
  22. BROCH, E. (1974): The influence of water on some properties. Advances in Rock Mechanics, Proc. 3rd Congress Int. Assoc. Rock Mechanics, 2 Part A, National Academy of Sciences, Washington, D.C. 33–38.Google Scholar
  23. BREDTHAUER, R.O. (1957): Strength characteristics of rock samples under hydrostatic pressure. Trans Amer. Soc. Mech. Engrs, 79, 695–708.Google Scholar
  24. BRUNSDEN, D., DOORNKAMP, J. C., GREEN, C. P. and JONES, D. K. C. (1976): Tertiary and Cretaceous sediments in solution pipes in the Devonian Limestone of South Devon, England. Geol. Mag., 113 (5), 441–447.CrossRefGoogle Scholar
  25. BURNETT, A. D. and EPPS, R. J. (1979): The engineering geological description of carbonate suite rocks and soils. Ground Engineering (March), 41–48.Google Scholar
  26. CLARK, A. R. and WALKER, B. F. (1977): A proposed scheme for the classification and nomenclature for use in the engineering description of Middle Eastern sedimentary rocks. Geotechnique, 27, 93–99.CrossRefGoogle Scholar
  27. DEARMAN, W. R. (1974a): The characterisation of rock for civil engineering practice in Britain. Colloque de Geologie de l'Ingenieur. Roy. Geol Soc. Belg., 1–75.Google Scholar
  28. DEARMAN, W. R. (1974b): Weathering classification in the characterization of rock for engineering purposes in British practice. Bull. Int. Ass. Engng Geol., 9, 33–42.CrossRefGoogle Scholar
  29. DEERE, D. U. and MILLER, R. P. (1966): Engineering classification and index properties for intact rock. Report AFWL-TR-65-116. Air Force Weapons Laboratory (WLDC) Kirtland Air Force Base, New Mexico 87117.CrossRefGoogle Scholar
  30. DEERE, D. U., MERRIT, A. H. and COON, R. F. (1969): Engineering classification of in situ rock. Report AFWL-67-144, Air Force Systems Command, Kirtland Air Force Base, New Mexico.Google Scholar
  31. DEERE, D. U. and PATTON, F. D. (1971): Slope stability in residual soils. 4th Panam. Conf. Soil Mech. Found Engng San Juan, Puerto Rico. Amer. Soc. Civ. Engrs., 87–170.Google Scholar
  32. FOLK, R. L. (1959): Practical petrographic classification of lime stones. Bull. Amer. Assoc. Petroleum Geologists, 43, 1–38.Google Scholar
  33. FOOKES, P. G., DEARMAN, W. A. and FRANKLIN, J. A. (1971): Some enginering aspects of rock weathering with field examples from Dartmoor and elsewhere, Q. J1 Engng Geol. 4, 139–185.CrossRefGoogle Scholar
  34. FOOKES, P. G. and HIGGINBOTTOM, I. E. (1975): The classification and description of near-shore carbonate sediments for engineering purposes. Geotechnique, 25, 406–411.CrossRefGoogle Scholar
  35. FOOSE, R. M. (1953): Ground water behaviour in the Hershey Valley. Bull. Geol. Soc. Amer. 64, 623–646.CrossRefGoogle Scholar
  36. FOOSE, R. M. (1981): Sinking may be fast or slow. Geotimes, 26 (No. 8), 21–22, 24.Google Scholar
  37. FRANKLIN, J. A. and HOEK, E. (1970): Developments in triaxial testing equipment. Rock Mechanics, 2, 223–228.CrossRefGoogle Scholar
  38. HIGGINBOTTOM, I. E. (1976): General requirements for rocks and aggregates. Section 11.1 Anon. 1976, Applied Geology for Engineers, H.M.S.O., pp. 378.Google Scholar
  39. HOBBS, N. B. (1975): Factors affecting the prediction of settlement of structures on rock: With particular reference to the Chalk and Trias. Review Paper: Session IV, Rocks, 579–610. British Geotechnical Society 1975.Google Scholar
  40. HOEK, E. and BROWN, E. T. (1980a): Empirical Strength Criterion for Rock Masses. Journal of the Geotechnical Engineering Division, Proc. Am. Soc. civ. Engrs, 106, No GT9, 1013–1035.Google Scholar
  41. HOEK, E. and BROWN, E. T. (1980b): Underground excavations in rock, Institution of Mining and Metallury, London, pp. 527.Google Scholar
  42. HOSKING, J. R. and TUBEY, L. W. (1969): Research on low grade and unsound aggregates. Road Research Laboratory, Report LR 293, pp. 30.Google Scholar
  43. HOSKING, J.R. (1970): Road aggregates and their testing. One day symposium on quarrying, Bristol University, pp. 13.Google Scholar
  44. HOUGHTON, D. A. (1976): The role of rock quality indices in the assessment of rock masses. Proc. Symp. Exploration for Rock Engineering, Johannesburg. 119–128.Google Scholar
  45. JAMES, A. N. (1982): Solution parameters of carbonate rocks. Bull. Int. Assoc. Engng Geol., 24.Google Scholar
  46. JENNINGS, J. E., BRINK, A. B. A., LOUW, A. and GOWAN, G. D. (1965): Sinkholes and subsidences in the Transvaal dolomite of South Africa. Proc. 6th Int. Conf. Soil Mech. Found. Engr., Montreal, 1, 51–54.Google Scholar
  47. JENNINGS, J. E. (1966): Building on dolomites in the Transvaal. Civ. Engnr in S. Africa. Feb. 41–62.Google Scholar
  48. KOVARI, K. and TISA, A. (1975): Multiple failure state and strain controlled triaxial tests. Rock Mechanics, 7, 17–33.CrossRefGoogle Scholar
  49. LAUFFER, H. (1958): Gebirgsklassifierung für den Stollenbau. Geologie und Bauwesen, 24, 46–51.Google Scholar
  50. LITTLE, A. L. (1967): Laterites. Proc. 3rd Asian Reg. Conf. Soil Mech. and Found. Engng. Haife, Israel, II, 61–71.Google Scholar
  51. LITTLE, A. L. (1969): Definition, formation and classification (Laterites) Proc. Spec. Session Eng. Propt. Lateritic soils VII ICSMFE 2, July 1970, 3–11.Google Scholar
  52. LO, K. Y. and HORI, M. (1979): Deformation and strength properties of some rocks in Southern Ontario. Can. Geotech J1, 16, 108–120.CrossRefGoogle Scholar
  53. MISRA, B. (1974): Correlation of Rock Properties with machine performance. Ph. D. Thesis, University of Leeds, unpublished.Google Scholar
  54. MOGI, K. (1967): Effect of intermediate principal stress on rock failure. J1 Geophys. Res. 72 5117–5131.CrossRefGoogle Scholar
  55. PECK, R. B., HANSON, W. E. and THORBURN, T. H. (1974): Foundation Engineering, Wiley International, 2nd Ed., 514 pp.Google Scholar
  56. PECK, R. B. (1976): Rock foundations for structures, pp. 1–21. Rock Engineering for Foundations and Slopes. Am Soc. civ. Engrs. New York, Vol. 2, pp. 264.Google Scholar
  57. REYNOLDS, C. E. (1950): Concrete construction. 2nd Ed. Concrete Publications Ltd., London.Google Scholar
  58. SANDERS, M. K. and FOOKES, P. G. (1970): A review of the relationship of rock weathering and climate and its significance to foundation engineering. Engng Geol., 4, 289–325.CrossRefGoogle Scholar
  59. SCHWARTZ, A. E. (2964): Faillure of rock in the triaxial shear test. Proc. 6th Symp. Rock Mechanics, Rolla, Missouri. 109–151.Google Scholar
  60. SOWERS, G. B. and SOWERS, G. F. (1970): Introductory Soil Mechanics and Foundations, 3rd Ed., Macmillan, New York, pp. 556.Google Scholar
  61. SOWERS, G. F. (1976): Foundation bearing in weathered rock. pp. 32–42,in Rock Engineering for Foundations and Slopes. Am. Soc. civ. Engrs, New York, Vol. 2, pp. 264.Google Scholar
  62. WAKELING, T. R. M. (1970): A comparison of the results of standard site investigation methods against the results of a detailed geotechnical investigation in Middle Chalk at Mundford, Norfolk. Proc. Conf. In Situ Investigations in Soils and Rocks, London, British Geotechnical Society, p. 17–22.Google Scholar
  63. WARD, W. H., BURLAND, J. B. and GALLOIS, R. W. (1968): Geotechnical assessment of a site at Mundford, Norfolk, for a large proton accelerator. Geotechnique, 18, 339–432.CrossRefGoogle Scholar
  64. WARD, W. H. and BURLAND, J. B. (1968b): Assessment of the deformation properties of jointed rock in the mass. Proc. Int. Symp. Rock Mechanics, Madrid, 35–44.Google Scholar
  65. WAWERSIK, W. R. and FAIRHURST, C. (1970): A study of brittle fracture in laboratory compression experiments. Int. J1 Rock Mechanics Mining Sci., 7, 561–575.CrossRefGoogle Scholar
  66. WICKHAM, G. E.,ETIEDEMANN, H. R. and SKINNER, E. H. (1972): Support determinations based on geologic predictions. Proc. First North American Rapid Excavation and Tunnelling Conference, A.I.M.E., New York, 43–64.Google Scholar
  67. WINDHAM, S. R. and CAMPBELL, K. M. (1981): In Florida, sinkholes follow the pattern. Geotimes, 26 (No. 8), 20–21.Google Scholar

Copyright information

© International Association of Engineering Geology 1981

Authors and Affiliations

  • Dearman W. R. 
    • 1
  1. 1.Department of Geology, Engineering Geology UnitUniversity of Newcastle upon TyneNewcastle, upon TyneUK

Personalised recommendations