Development of a quantitative relationship between unconfined compressive strength and los angeles abrasion loss for carbonate rocks

  • Shakoor A. 
  • Brown C. L. 


Dry density, absorption, and uncofined compressive strength were determined for ten NX-size cores of each of the 15 carbonate rocks sampled from various quarries, strip mines, and road cuts. Three Los Angeles abrasion tests were performed on aggregate prepared from the same rock blocks from which the cores were cut. Regression analyses were performed to determine relationships that L.A. abrasion loss, dry density, and absorption may have with unconfined compressive strength. Results indicate that multiple linear regression, with unconfined compressive strength as a function of Los Angeles abrasion loss, dry density, and absorption, yields a useful predictive equation (adjusted R2=0.729) for the rocks studied. The equation was further validated by using test data from five additional samples.


Compressive Strength Carbonate Rock Abrasion Test Sive Strength Unconfined Compression Test 

Établissement d'une relation quantitative entre la résistance à la compression simple et le coefficient los angeles pour des roches carbonatées


La masse volumique sèche, l'absorption d'eau et la résistance à la compression simple sont déterminées sur dix carottes (taille de NX) provenant de 15 roches calcaires (incluant quelques dolomies), prélevées dans diverses carrières, mines à ciel ouvert, et déblais routiers. Trois essais d'abrasion «Los Angeles» sont réalisés sur des granulats préparés à partir des roches d'où proviennent les carottes. Des analyses de régression sont faites pour examiner la résistance à la compression en fonction de la perte d'abrasion «L.A.», la masse volumique sèche et l'absorption d'eau. Les régressions linéaires multiples donnent une équation prédictive utilisable (r2 corrigé=0.729) pour les échantillons étudiés. Cette équation a été confirmée en plus par l'utilisation des données provenant de cinq échantillons additionnels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Society for Testing and Materials, 1988, Concrete and Aggregates: Annual Book of ASTM Standards, v. 4.02: Philadelphia, Pennsylvania, 751 p.Google Scholar
  2. American Society for Testing and Materials, 1990, Soil and Rock, Building Stones: Annual Book of ASTM Standards, v. 4.08: Philadelphia, Pennsylvania, 1092 p.Google Scholar
  3. BALLIVY G. and DAYRE M., 1984: The mechanical behavior of aggregates related to the physicomechanical properties of rocks: Bulletin of the International Association of Engineering Geology, no. 29, p. 339–342.CrossRefGoogle Scholar
  4. BMDP, 1988: Statistical Software Manual: Dixon, W.J., (editor) University of California Press, Berkeley, California, 1234 p.Google Scholar
  5. CARGILL J.S. and SHAKOOR A., 1990: Evaluation of empirical methods for measuring the uniaxial compressive strength of rock: International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, v. 27, no. 6, p. 495–503.CrossRefGoogle Scholar
  6. DRAPER N. and SMITH H., 1966: Applied Regression Analysis: New York, Wiley, 407 p.Google Scholar
  7. EVERELL M.S., GiLL D.E. and SIROIS L.L., 1970: Relations of grinding selection functions to physicomechanical properties of rocks: Proc. 6e symposium Canadien de Mécanique des Roches, Ecole Polytechnique, Montreal, p. 177–193.Google Scholar
  8. EVERELL M.D., GILL D.E. and SIROIS L.L., 1971: Etude des produits de broyage compte tenu des résistances à l'écrasement des particules: Dechma-Monographen, Amsterdam, p. 139–166.Google Scholar
  9. FAHY M.P. and GUCCIONE M.J., 1979: Estimating strength of sandstones using petrographic thin-section data: Bulletin of the Association of Engineering Geologists, v. 16, no. 4, p. 467–485.Google Scholar
  10. GUNSALLUS K.L. and KULHAWY F.H., 1984: A comparative evaluation of rock strength measures: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, v. 16, no. 5, p. 233–248.CrossRefGoogle Scholar
  11. HANEY M.G. and SHAKOOR A., 1994: The relationship between tensile and compressive strengths for selected sandstones as influenced by index properties and petrographic characteristics: Proceedings 7th International Congress, International Association of Engineering Geology, Lisbon, Portugal, v. IX, 3013–3021.Google Scholar
  12. HUGMAN R.H.H. and FRIEDMAN M., 1979: Effects of temperature and composition on mechanical behavior of experimentally deformed carbonate rocks. The American Association of Petroleum Geologists Bulletin, v. 63, no. 9, p. 1478–1489.Google Scholar
  13. KAZI A. and AL-MANSOUR Z.R. 1980(a): Influence of geological factors on abrasion and soundness characteristics of aggregates: Engineering Geology, v. 15, p. 195–203.CrossRefGoogle Scholar
  14. KAZI A. and AL-MANSOUR Z.R., 1980(b) Empirical relationship between Los Angeles abrasion and Schmidt hammer strength tests with application to aggregates around Jeddah: Quarterly Journal of Engineering Geology, v. 13, no. 1, p. 45–52.CrossRefGoogle Scholar
  15. KOWALSKI W.C., 1966: The interdependence between the strength and voids ratio of limestone and marls in connection with their water saturating and anisotropy: Proceedings of the First Congress of the International Society for Rock Mechanics, Lisbon, Portugal, p. 143–144.Google Scholar
  16. RZHEVSKY V. and NOVIK G., 1971: The physics of rocks, Moscow, Mir Publishers, 320 p.Google Scholar
  17. SHAKOOR A. and BONELLI R.E., 1991: Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Association of Engineering Geologists Bulletin, v. XXVIII, p. 55–71.Google Scholar
  18. SMORODINOV M.I., MOTOVILOV E.A. and VOLKOV V.A., 1970: Determination of correlation relationships between strength and some physical characteristics of rocks. Proceedings of the Second Congress of the International Society for Rock Mechanics, Belgrade, v. 2, p. 35–37.Google Scholar
  19. SZLAVIN J., 1974: Relationships between some physical properties of rock determined by laboratory tests: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, v. 11, p. 57–66.CrossRefGoogle Scholar
  20. YAMAGUCHI U., 1970: Number of test pieces required to determine strength of rock. International Journal of Rock Mechanics and Mining Sciences, v. 7, no. 2, p. 209–227.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1996

Authors and Affiliations

  • Shakoor A. 
    • 1
  • Brown C. L. 
    • 2
  1. 1.Department of GeologyKent State UniversityKent
  2. 2.Gannett-Flemming, Inc.King of Prussia

Personalised recommendations