Computer controlled volumetric strain measurements in metadolerite

  • A. Cipullo
  • W. White
  • I. K. Lee


A new volumetric strainmeter system has been developed for the measurement of true volumetric strains occurring in selected fresh and decomposed rock samples tested under computer controlled triaxial loading conditions.

The system is capable of resolving volume adjustments of the confining medium to within ±2.8 mm3 and maintain confining pressure deviations to ± 6.9 kPa. The results of the investigation have shown the inadequacy of the commonly used strain gauge method to represent the volumetric strains occurring in the whole of the test specimen and they have provided further experimental evidence for the continuity concept in the fracture mechanism of rocks. Even in the most decomposed samples tested, crack initiation and propagation starts at lower stress levels than previously recognised, in contrast to the generally accepted concept of critical stress levels which characterise and define the process of brittle fracture propagation in rocks.


Drill Hole Volumetric Strain Triaxial Test Radial Strain Volume Recovery 

Mesure volumétrique des déformations dans une métadolérite par ordinateur


Un nouvel appareil destiné à contrôler les déformations volumétriques a été mis au point pour mesurer les véritables différences de volume se produisant sur un échantillon de roche comprimé dans les trois axes sous contrôle d'un ordinateur.

L'appareil est capable de mesurer des différences de volume en milieu confiné de l'ordre de ±2,8 mm3, et de garder une pression du milieu entre ±6,9 kPa. Les résultats de ces investigations ont montré le manque de précision de la méthode usuelle pour représenter les volumes des déformations se développant dans l'échantillon et elles ont permis de confirmer par des expériences le principe des mécanismes de rupture des roches.

Même dans les essais d'échantillons plus altérés, l'origine des fissures et leur développement commencent sous des contraintes inférieures à celles prévues, contredisant ce qui est généralement admis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BIENIAWSKI A.T. (1967): Mechanism of Brittle Fracture of Rock,Int. Jour. Rock Mech. Min. Sci. Vol. 4, p. 395–435.CrossRefGoogle Scholar
  2. BIENIAWSKI Z.T. (1968): Propagation of Brittle Fracture in Rocks,10th Symp. Rock Mech. Austin, (Texas), p. 409.Google Scholar
  3. BRACE W.F., PAULDING B.W. and SCHOLZ C. (1966): Dilatancy in the Fracture of Crystalline Rocks,Geophysical Research, Vol. 71, No. 16, p. 3939–3953.CrossRefGoogle Scholar
  4. CARROLL D. (1970). Clay Minerals: A Guide to their X-Ray Identification,The Geological Society of America, Special Paper 126.Google Scholar
  5. CIPULLO A. (1983):Evaluation of Engineering Properties of Decomposed Rocks Ph. D Thesis, The Uni. of N.S.W., Australia.Google Scholar
  6. CRAIG D.C., and LOUGHNAN, F.C. (1964): Chemical and Mineralogical Transformations Accompanying the Weathering of Basic Volcanic Rocks from N.S.W.,Australian Jour. Soil Res., Vol. 2, p. 218–234.CrossRefGoogle Scholar
  7. CROUCH S.L. (1970): Experimental Determination of Volumetric Strain in Failed Rocks,Int. Jour. Rock Mech. Min. Sci. Vol. 7, No. 6.CrossRefGoogle Scholar
  8. CROUCH S.L. (1972): A note on Post Failure Stress-Strain Path Dependance in NoriteInt. Jour. Rock Mech. Min. Sci. Vol. 7, No. 6.Google Scholar
  9. EDMOND J.M. and PATTERSON M.S. (1972): Volume changes During the Deformation of Rocks at High Pressures,Int. Jour. Rock Mech. Min. Sci., Vol. 9, p. 161–182.CrossRefGoogle Scholar
  10. INGLES O.G., LEE I.K. and NEIL, R.G. (1973): The Influence of Stress History on Lateral Strain,Rock Mech. Vol. 5, p. 203–213, (1973).CrossRefGoogle Scholar
  11. INT. SOC. ROCK MECHANICS (1978): Commiss. on Stand. of Lab. and Field Tests, Suggested Methods for Determining the Strength of Rock Material in Triaxial Compression,Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 15, No. 2.Google Scholar
  12. INT. SOC. ROCK MECHANICS (1978): Commiss. on Stand. of Lab. and Field Tests, Suggested Method for Petrographic Description of Rocks,Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 15, No. 2.Google Scholar
  13. IRFAN T.Y. and DEARMAN W.R. (1978): The Engineering Petrology of a Weathered Granite in Cornwall,Q.J. Eng. Geol., Vol. 11, p. 233–244.CrossRefGoogle Scholar
  14. JOPLIN G.A. (1963): Chemical Analyses of Australian Rocks: Part 1: Igneous and Metamorphic,C'Wlth of Aust., Dept. Nat. Devel. Bur. Min. Resourc. Geol. Geophys. Bill, No. 65.Google Scholar
  15. JOPLIN G.A. (1968):A Petrography of Australian Igneous Rocks, Angus and Robertson.Google Scholar
  16. JOPLIN G.A. (1968):A Petrography of Australian Metamorphic Rocks. Augus and Robertson.Google Scholar
  17. KNILL J.L., FRANKLIN J.A. and MALONE A.W. (1968): A Study of Acoustic Emission from Stressed Rocks,Int. J. Rock Mech. Min. Sci., Vol. 5, p. 87–121.CrossRefGoogle Scholar
  18. LEAKE B.E., HENDRY G.L., KEMP A., PLANT A.G., HARVEY P.K., WILSON J.R., COATS J.S., AVCOTT J.W., LUNNEL J. and HOWART R.J. (1969): The Chemical Analysis of Rock Powders by Automatic X-Ray Fluorescence,Chemical Geology, Vol. 5, No. 1, p. 7–86.CrossRefGoogle Scholar
  19. LEE I.K., INGLES O.G. and NEIL R.C. (1973): Controlled Deformation of a Cemented Soil and Sand,Proceed. 8th Int. Conf. Soil Mech. and Found Eng. Moscow, p. 245–249.Google Scholar
  20. SHAW H.F. (1972): The Preparation of Oriented Clay Mineral Specimens for X-Ray Diffraction Analysis by a Suction onto Ceramic Tile Method,Clay Mineralogy, Vol. 9, p. 349–350.CrossRefGoogle Scholar
  21. SCHOLZ C. (1968): Microfracturing and the Inelastic Deformation of Rock in Compression,J. Geoph. Res. Vol. 73, No. 4, p. 1417–1432.CrossRefGoogle Scholar
  22. SCHOLZ C. (1970): The Role of Microfracturing in Rock Deformation,Proceed. 2nd Congr. Int. Soc. Rock Mech. Vol. 1, p. 323–327, Beograd.Google Scholar
  23. SCHOLZ C. and KRANZ R. (1974): Notes on Dilatancy,J. Geoph. Res., Vol. 79, No. 14, p. 2132–2135.CrossRefGoogle Scholar
  24. WALSH J.B. (1965): The Effect of Cracks on the Compressibility of Rocks,J. Geophys. Res. Vol. 70, p. 381–389.CrossRefGoogle Scholar
  25. WALSH J.B. (1965): The Effect of Cracks on the Uniaxial Elastic Compression of Rocks,J. Geophys. Res., Vol. 70, p. 399–411.CrossRefGoogle Scholar
  26. WALSH J.B. (1965): The Effects of Cracks in Rocks on Poisson's Ratio,J. Geophys. Res. Vol. 70, p. 5249–5257.CrossRefGoogle Scholar
  27. WAWERSIK W.R. (1975): Technique and Application for Strain Measurements in Rocks in Constant Confining Pressure Experiments,Rock Mech. Vol. 7, p. 231–241.CrossRefGoogle Scholar
  28. WIID B.L. (1970): The Influence of Moisture on the Pre-rupture Fracturing of Two Rock Types,Proceed. 2nd Congr. Int. Soc. Rock Mech., Vol. 2, Beograd.Google Scholar
  29. ZOBACK M.D. and BYERLEE J.D. (1975) The Effect of Cyclic Differential Stress on Dilatancy in Westerly Granite under Uniaxial and Triaxial Conditions,J. Geoph. Res., Vol. 80, No. 11, p. 1526.CrossRefGoogle Scholar
  30. ZOBACK M.D. and BYERLEE J.D. (1975): The Effect of Microcrack Dilatancy on the Permeability of Westerly Granite,J. Geoph. Res., Vol. 80, No. 5, p. 752.CrossRefGoogle Scholar

Copyright information

© International Assocaition of Engineering Geology 1985

Authors and Affiliations

  • A. Cipullo
    • 1
  • W. White
    • 2
  • I. K. Lee
    • 2
  1. 1.Empire CentreGeotechnical Control OfficeKowloonHong Kong
  2. 2.School of Civil EngineeringThe University of New South Wales, Royal Military CollegeDuntroonAustralia

Personalised recommendations