Advertisement

Radon gas—A radiation hazard from radioactive bedrock and building materials

  • Åkerblom G. V. 
  • Wilson Carole 
26e Congrès Géologique International Paris, France, 7–17.07.1980 Symposium Inter-Sections S 16& S 17 Mapping Geological Hazards

Summary

Exposure to radioactive materials is not a problem solely connected with nuclear energy or nuclear weapons. The past year has witnessed real concern in Sweden regarding natural radiation hazards in the everyday environment, in particular exposure to high levels of radon gas and radon daughter products in dwellings. The source for the radon can be either building materials containing higher than normal amounts of radioactive elements, or bedrock and/or drift cover with relatively high concentraions of uranium.

The bedrock contribution to the radiation hazard relates directly to the uranium-bearing alum shale formation of Cambrian age and to certain Precambrian uranium- and thorium-enriched graintes. The Geological Survey of Sweden is preparing GEO-radiation maps which show the distribution of rocks and soils which are radioactive. building materials incorporating these rock types, in particular alum shale, can also have high radium contents resulting in the release of radon gas to the in-door atmosphere.

This paper summarizes the recommendations of the Swedish Government Commission set up to investigate the radon problem, and the role of the geologist in delimiting the extent of the problem of natural radiation from the ground.

Keywords

Uranium Shale Radon Gamma Radiation Radon Emanation 

Radon—Les risques de radiations causes par des roches et materiaux de construction radioactifs

Résumé

L'exposition à des sources radioactives n'est pas un problème en liaison exclusive avec la production d'énergie ou les armes nucléaires. Les risques des radiations dans le milieu de la vie quotidienne ont soulevé un vif intérêt en Suède dans l'année passée, en particulier les risques d'exposition à d'importantes émanations de gaz radon et de ses produits de désintégration dans les habitations. La source du radon peut se trouver soit dans des matériaux de construction contenant des qutités anormales d'éléments radioactifs, soit dans un sous-sol rocheux et/ou des alluvions qui présentent des concentrations d'uranium relativement importantes.

Les risques de radiations dus au soubassement rocheux sont en relation étroite avec la présence d'une formation de schistes alumineux uranifères d'age Cambrien, ou de certains granites Précambriens riches en uranium et thorium. En conséquence, les matériaux de construction incorporant ces types de roches, en particulier des schistes alumineux, peuvent contenir d'importantes quantités de radium produisant des émanations de radon dans l'atmosphère intérieure des habitations.

Cet article résume les recommandations établies par la commission gouvernementale suédoise pour l'étude des problèmes dus au radon, et souligne le rôle du géologue dans l'estimation des problèmes des radiations naturelles du sous-sol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARMANDS G. (1972): Geochemical studies of uranium, molybdenum and vanadium in a Swedish alum shale. Acta Universitatis Stockholmiensis, Stockholm contributions in geology, XXVII (1), 1–148.Google Scholar
  2. ATOMIC ENERGY CONTROL BOARD (1979): Report on the investigation and implementation of remedical measures for the reduction of radioactivity found in Bancroft. Ontario and its environment. Report to the Atomic energy Control Board. James F. MacLaren, Limited.Google Scholar
  3. CIVILUTSKOTTET (1979): Betänkande med anledning av propositionen 1979/80: 97 om atgärder mot strålrisker i byggnader såvitt propositionen hänvisats till civilutskottet. (Proposal regarding the Government Bill 1979/80:97 on measures against radiation hazards in dwellings. In Swedish). Riksdagen 1979/80. 19 saml. Nr 28, 1–10.Google Scholar
  4. D. O. E. (1979): Progress report on the Grand Junction uranium mill tailings remedial action program. D. O. E. Division of Environmental Control Technology, D. O. E. Grand Junction Office, Colorado Department of Health, Assisted by E. McGuire, Inc., Greenly, Colorado, U. S. Department of Energy, Washington, D. C. 20545, DOE/EV-0033, UC-2, UC-11.Google Scholar
  5. GINGRICH J. E.—FISHER J. C. (1976): Uranium exploration using the track-etch method. In: Exploration for uranium ore deposits. IAEA-SM-209/19, International Atomic Energy Agency, Vienna, 213–225.Google Scholar
  6. GIMOND R. J.—ELLETT W. H.—FITZGERALD J. E.—WINDHAM S. T.— CUNY P. A. (1979). Indoor radiation exposure due to radium-226 in Florida phosphate lands. Criteria and Standards Division Office of Radiation Programs, U. S. Environmental Protection Agency, Washington D. C. 20460.Google Scholar
  7. IAEA (1979): Gamma-ray surveys in uranium exploration. Technical reports series no. 186, International Atomic Energy Agency, Vienna, 1–90.Google Scholar
  8. JORDBRUKSDEPARTEMENTET (1979): Åtgärder mot stralrisker i byggnader m m. (Instructions to the Radon Commission. In Swedish.), Kommittéberättelsen del 2. Jordbruksdepartementet, Jo 2/1979, 1–4.Google Scholar
  9. JORDBRUKSUTSKOTTET (1979): Betänkande med anledning av propositionen 1979/80:97 om åtgärder mot strålrisker i byggnader i vad avser anslag i tionde huvudtiteln jämte motion. (Proposals regarding the Goverment Bill 1979/80:97 on measures against radiation hazards in dwellings. In Swedish.), Riksdagen 1979/80. 16 saml. Nr. 38, 1–3.Google Scholar
  10. LINDEN A. H.—AKERBLOM G. (1976): Method of detecting small or indistinct radioactive sources by airborne gammaray spectrometry. In: Geology, mining and extractive processing of uranium. Ed. M. J. Jones. Institution of Mining and Metallurgy, London, 113–120.Google Scholar
  11. MORSE R. H. (1976): Radon counters in uranium exploration. In: Exploration for uranium ore deposits. IAEA-SM-208/55, International Atomic Energy Agency, Vienna, 229–239.Google Scholar
  12. RADONUTREDNINGEN (1979): Preliminärt förslag till atgarder mot strålrisker i byggnader. (Preliminary proposal for measures against radiation hzards in buildings. In Swedish.), Report from the Radon Commission, Jordbruksdepartementet, Ds Jo 1979:9, 114 pp.Google Scholar
  13. SMITH A. Y.—BARRETTO P. M. C.—POURUIS S. (1976): Radon methods in uranium exploration. In: Exploration for uranium ore deposits. IAEA-SM-208/52, International Atomic Energy Agency, Vienna, 185–208.Google Scholar
  14. SWEDJEMARK G. A. (1977): The ionizing radiation in dwellings related to the building materials. States strålskydssinstitut, Report SSI: 1977-004, 1–9.Google Scholar
  15. SWEDJEMARK G. A. (1978a): Radon in dwellings in Sweden. Statens strålskyddsinstitut, Report SSI: 1978-013, 1–24.Google Scholar
  16. SWEDJEMARK G. A. (1978b): Stråldosens ökning vid energibesparing i bostäder genom minskning av ventilationen. (The effects of energysaving reduced ventilation on radiation dose in dwellings. In Swedish.), Statens strålskyddsinstitut, Report SSI: 1978-014, 1–13.Google Scholar
  17. SWEDJEMARK G. A. (1979a): Terrestrial and cosmic radiation in Scandinavia. Statens strålskyddsinstitut, Reports SSI: 1979-025, 1–9.Google Scholar
  18. SWEDJEMARK G. A. (1979b): Indoor measurements of natural radioactivity in Sweden. Statens strålskyddsinstitut, Report SSI: 1979-026, 1–11.Google Scholar
  19. SWEDJEMARK G. A. (1980): Radioactivity in houses built of aerated concrete based on alum shale. Statens strålskydds-institut, Report SSI: 1980-14, 1–6.Google Scholar
  20. SWEDJEMARK G. A.—HÅKANSSON B.—HAGBERG N. (1979): Strålningsnivåer i hus byggda på avfall från hantering av alunskiffer. (Radiation levels in houses built on wasters from processing of alum shale. In Swedish.), Statens strålsky ddsinstitut, Report SSI: 1979-006, 1–43.Google Scholar
  21. WILSON M. R.—AKERBLOM G. (1980): Uranium-enriched granites in Sweden. Sveriges geologiska undersökning, Rapporter och meddelanden nr. 19, 1–30.Google Scholar

Copyright information

© International Assocaition of Engineering Geology 1981

Authors and Affiliations

  • Åkerblom G. V. 
    • 1
  • Wilson Carole 
    • 1
  1. 1.Geological Survey of SwedenLuleåSweden

Personalised recommendations