A quantitative petrofabric characterization of metamorphic rocks

  • Tsidzi K. E. N. 


Adequate and reliable estimation of the nature of rocks is a primary requirement in engineering geology. Of crucial concern in the characterization of metamorphic rocks in particular is their intrinsic anisotropic fabric, foliation.

The degree of foliation has been assessed in terms of a proposed quantitative foliation index involving micropetrographic modal and shape factor analyses. This approach improves the accurate identification and description of metamorphic rocks and provides a reliable basis for the estimation of the behavioural aspects of rock anisotropy in engineering geology.


Metamorphic Rock Shape Factor Cordierite Andalusite Alkali Feldspar 

Analyse structurale quantitative de roches métamorphiques


Une appréciation correcte et fiable de la nature des roches est une nécessité première en géologie de l'Ingénieur. En ce qui concerne les roches métamorphiques, un point essentiel est leur structure intrinsèquement anisotrope, leur foliation.

Le degré de foliation a été étudié et un indice caractérisant cette foliation de manière quantitative est proposé, incluant des analyses modales micropétrographiques et un facteur de forme. Cette approche améliore la connaissance et la description des roches métamorphiques et fournit des éléments fiables pour la précision du comportement des roches anisotropes dans le domaine de la géologie de l'Ingénieur.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANON, (1977). The Description of Rock Masses for Engineering Purposes. Working Party Report, Engineering Group of the Geological Society of London. Q.J. Engng. Geol., Vol. 10, pp. 355–388.Google Scholar
  2. ANON. (1979). Classification of Rocks and Soils for Engineering Geological Mapping. Part. I: Rock and Soil Materials. Bull. Int. Assoc. Engng Geol., No. 19, pp. 364–371.Google Scholar
  3. BARROW, G. (1893). On an Intrusion of Muscovite-Biotite Gneiss in the South-Eastern Highlands of Scotland and its. Accompanying Metamorphism. Q.J. Geol. Soc. London, Vol. 23, pp. 330–353.CrossRefGoogle Scholar
  4. BARROW, G. (1912). On the Geology of Lower Deeside and the Southern Highland Border. Proc. Geol. Assoc., Vol. 23, pp. 274–290.CrossRefGoogle Scholar
  5. BELL, T.H. (1978). The Development of Slaty Cleavage across the Nackara Arc of the Adelaide Geosyncline Tectonophysics. Vol. 51, pp. 171–201.CrossRefGoogle Scholar
  6. BEST, M.G. (1982). Igneous and Metamorphic Petrology. W.H. Freeman and Co., San Francisco, 630 p.Google Scholar
  7. BORG, I. and HANDIN, J. (1966). Experimental Deformation of Crystalline Rocks. Tectonophysics, Vol. 3, No. 4 Special Issue, Elsevier Publ., Co., Amsterdam.Google Scholar
  8. CHAYES, F. (1956). Petrographic Modal Analysis. An Elementary Statistical Appraisal. John Wiley and Sons Inc., New York, 113 p.Google Scholar
  9. DIXON, H.W. (1969). Decomposition Products of Rock Substances. Proposed Engineering Geological Classification. Rock Mech. Symp., Univ. Sydney, pp. 39–44.Google Scholar
  10. DURNEY, D.W. (1972). Solution-transfer, An Important Geological Deformation Mechanism. Nature, Vol. 235, pp. 315–317.CrossRefGoogle Scholar
  11. ETHERIDGE, M.A., WALL, V.J. and VERNON, R.H. (1983). The Role of the Fluid Phase During Regional Metamorphism and Deformation. J. Metamorphic Geol., Vol. 1, pp. 205–226.CrossRefGoogle Scholar
  12. FLINN, D. (1965). Deformation in Metamorphism. In. Controls of metamorphism (W.S. Pitcher and G.W. Flinn, eds.), Oliver and Boyd, Edinburgh, U.K.Google Scholar
  13. GREENLY, E. (1919). The Geology of Anglesey. Mem. Geol. Survey, U.K. 2 Vols.Google Scholar
  14. HOBBS, B.E., MEANS, W.D. and Williams, P.F. (1976). An Outline of Structural Geology, John Wiley and Sons Ltd., New York, 571 p.Google Scholar
  15. HOLYWELL, R.C. and TULLIS, T.E. (1975). Mineral Reorientation and Slaty Cleavage in Martinsburg Formation. Leigh Gap. Pennsylvania. Geol. Soc. Am. Bull., Vol. 86, pp. 1296–1304.CrossRefGoogle Scholar
  16. IRFAN, Y.T. and DEARMAN, W.R. (1978). Engineering Petrography of a Weathered Granite. Q.J. Engng Geol. London, Vol. 11, pp. 233–244.CrossRefGoogle Scholar
  17. KERR P.F. (1969). Optical Mineralogy, 3rd edn., McGraw-Hill Book Co., Inc., New York, 442 p.Google Scholar
  18. MACKENZIE, W.S. and GUILFORD, C. (1980). Atlas of Rock-forming Minerals in Thin Section. Longman Group Ltd., Essex, U.K. 98 p.Google Scholar
  19. MACKLETOW, N.S. (1979). The Development of slaty Cleavage, Fleurieu Peninsula, South Australia. In: Microstructural Processes During Deformation and Metamorphism. (T.H. Bell and R.H. Vernon, eds.). Tectonophysics, Vol. 58, pp. 1–20.Google Scholar
  20. McWILLIAMS, J.R. (1966). The Role of Microstructure in the Physical Properties of Rock. Testing Techniques for Rock Mechanics. ASTM Special Tech. Publ., Vol. 402, pp. 175–189.Google Scholar
  21. MEANS, W.D. (1977). Experimental Contributions to the Study of Foliations in Rocks: A Review of Research since 1960. Tectonophysics, Vol. 39, pp. 329–354.CrossRefGoogle Scholar
  22. MENDES, M.F., AIRES-BARROS, L. and PERES-RODRIGUES, F. (1966). The Use of Modal Analysis in the Mechanical Characterization of Rock Masses. Proc. 1st Cong. ISRM, Liberon, Vol. 1, pp. 217–233.Google Scholar
  23. ROBIN, P.Y.F. (1979) Theory of Metamorphic Segregration and Related Processes. Geochimica et Cosmochimica Acta, Vol. 1, pp. 263–267.Google Scholar
  24. SHACKLETON, R.M. (1953). The Structural Evolution of North Wales. Liverpool and Manchester Geol. J., Vol. 1, pp. 261–297.CrossRefGoogle Scholar
  25. SHACKLETON, R.M. (1954). The Structure and Succession of Anglesey and the Lleyn Peninsula. Adv. Sci., London, Vol. 2, pp. 106–108.Google Scholar
  26. SIMMONS, G., TODD, T. and BALBRIDGE, W.S. (1975). Toward a Quantitative Relationship Between Elastic Properties and Craks in Low Porosity Rocks. Am. J. Sci., Vol. 275, pp. 318–345.CrossRefGoogle Scholar
  27. SPRY, A. (1969). Metamorphic Textures. Pergamon Press Ltd., Oxford, 350 p.Google Scholar
  28. TULLIS, T.E. (1976). Experiments on Origin of Slaty Cleavage and Schistosity. Geol. Soc. Am. Bull., Vol. 87, pp. 745–753.CrossRefGoogle Scholar
  29. TULLIS, T.E. and WOOD, D.S. (1975). Correlation of Finite Strain from Both Reduction Bodies and Preferred Orientation of Mica in Slates from Wales. Geol. Soc. Am. Bull., Vol. 86, pp. 632–638.CrossRefGoogle Scholar
  30. WILLARD, R.J. and McWILLIAMS, J.R. (1969). Microstructural Techniques in the Study of Physical Properties of Rock. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 6, pp. 1–12.CrossRefGoogle Scholar
  31. WILLIAMS, P.F. (1977). Foliation: A Review and Discussion. Tectonophysics, Vol. 39, pp. 305–328.CrossRefGoogle Scholar
  32. WOOD, D.S. (1973). Patterns and Magnitudes of Natural Strain in Rocks Phil. Trans. Roy. Soc. London, Ser. A., Vol. 274, pp. 373–382.CrossRefGoogle Scholar
  33. WOOD, D.S. (1974). Current Views of the Development of Slaty Cleavage. Earth Planetary Sci. Ann. Rev. Vol. 2, pp. 369–401.CrossRefGoogle Scholar

Copyright information

© International Assocaition of Engineering Geology 1986

Authors and Affiliations

  • Tsidzi K. E. N. 
    • 1
  1. 1.School of MinesUniversity of Sciences and TechnologyKumasiGhana

Personalised recommendations