Advertisement

Geotechnical properties of undisturbed and compacted amphibolite derived laterite soil

  • Olufemi Ogunsanwo
Article

Abstract

This study considers the influence of compactive energy on certain geotechnical properties of an amphibolite derived laterite soil with respect to the undisturbed soil. Properties such as void ratio, compression index, coefficient of permeability and cohesion showed improvement with increased compaction energy. Critical pressure and angle of internal friction were more or less constant while the maximum density showed improvement only at the energy of the modified Proctor. The usability of the soil at the various densities is also assesed.

Keywords

Axial Strain Void Ratio Triaxial Test Compact Soil Stress Path 

Propriétés géotechniques d’un sol latéritique non remanié et compacté d’origine amphibolitique

Résumé

Cette étude considère l’influence de l’énergie de compactage sur certaines propriétés d’un sol latérivique dérivé d’amphibolites par rapport à un sol non remanié. Des propriétés telles que le pourcentage de vides, l’indice de compression, le coefficient de perméabilité et la cohésion montrent une amélioration avec l’augmentation de l’énergie de compactage. La pression critique et l’angle de fronttement interne sont plus ou moins constants alors que la densité sèche maximum montre une amélioration seulement à l’énergie du Proctor modifié. Les utilisations du sol à différentes densités sont aussi discutées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BISHOP A.W. and HENKEL, D.J. 1962: The measurement of soil properties in the triaxial test. Edward Arnold Ltd., London.Google Scholar
  2. BJERRUM L. and HUDER J. 1957: Measurement of the permeability of compacted clays. Proc. 4th Int. Conf. Soil Mechanics and Foundation Engineering, Vol. 1: 6–8.Google Scholar
  3. CASAGRANDE A. 1936: The determination of the preconsolidation load and its practical significance. Proc. Int. Conf. Soil Mechanics and Foundation Engineering. Vol. III: 60–64.Google Scholar
  4. DIN 1984: Baugrund; Untersuchung von Bodenproben. Deutsches Institut für Normung e.V., Beuth Verlag CmbH, Berlin 30 und Köln I.Google Scholar
  5. DE P.K. and FURDAS, B. 1973. Discussion on Wallace (1973). Géotechnique 23 (4): 601–603.CrossRefGoogle Scholar
  6. GIDIGASU M.D. 1976. Laterite soil engineering. Elsevier, Amsterdam.Google Scholar
  7. LAMBE T.W. and WHITMAN, R.V. 1969: Soil Mechanics. J. Wiley, New YorkGoogle Scholar
  8. LOWE J. and JOHNSON, T.C. 1960: Use of back pressure to increase degree of saturation of triaxial test specimens. proc. Research Conf. on Shear Strength of Cohesive Soils (American Society of Civil Engineers): 819–836.Google Scholar
  9. MAINI K.S. 1971: Einfluss der Endflächenreibung und der Verformungs-geschwindigkeit auf die Ergebnisse des Triaxialversuches bei Verdichteten Böden. Doktor-Ingenieurs Dissertation. Technische Hochschule, München.Google Scholar
  10. OGUNSANWO O. 1986: Basic index properties, mineralogy and microstructure of an amphibolite derived laterite soil. Bulletin of the Int. Association of Engineering Geology, No. 33: 19–25.CrossRefGoogle Scholar
  11. SAILIE E.L. and BUCHER F. 1984: Shear strength properties of tropical black clays. Proc. 8th Regional Conf. for Africa on Soil Mechanics and Foundation Engineering, Harare: 99–103.Google Scholar
  12. VON SOOS P., ADOLF H. und KRESSIERER J. 1974: Der Triaxialversuch. Institut für Grundbau und Bodenmechanik der Technische Universität, München (unpublished).Google Scholar
  13. WALLACE K.B. 1973: Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Géotechnique 23 (2): 203–218.CrossRefGoogle Scholar

Copyright information

© International Assocaition of Engineering eology 1990

Authors and Affiliations

  • Olufemi Ogunsanwo
    • 1
  1. 1.Dept. of Geology & Mineral Sciences University of IlorinIlorinNigeria

Personalised recommendations