Metallurgical and Materials Transactions A

, Volume 37, Issue 8, pp 2569–2579 | Cite as

Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: Cryomilling and spark plasma sintering

  • Jichun Ye
  • Leonardo Ajdelsztajn
  • Julie M. Schoenung


Dense, bulk nanocrystalline aluminum 5083 alloy was fabricatedvia a combined technique: cryomilling (mechanical milling at cryogenic temperature) to achieve the nanocrystalline Al 5083 powder and spark plasma sintering (SPS) to consolidate the cryomilled powder. The results of X-ray diffraction analysis indicate that the average grain size in the SPS consolidated material is 51 nm, one of the smallest grain sizes ever reported in bulk Al alloys produced by powder metallurgy derived methods. In contrast, transmission electron microscopy (TEM) analysis revealed a bimodal grain size distribution, with an average grain size of 47 nm in the fine-grained regions and approximately 300 nm in the coarse-grained regions. Nanoindentation was used to evaluate the mechanical properties and the uniformity of the consolidated nanocrystalline Al 5083. The hardness of the material is greatly improved over that of the conventional equivalent, due to the fine grain size. The mechanisms for spark plasma sintering and the microstructural evolution are discussed on the basis of the experimental findings.


Material Transaction Spark Plasma Sinter Mechanical Milling Plastic Yielding Spark Plasma Sinter Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gleiter:Acta Mater., 2000, vol. 48, pp. 1–29.CrossRefGoogle Scholar
  2. 2.
    C. Suryanarayana:Int. Mater. Rev., 1995, vol. 40, pp. 41–64.Google Scholar
  3. 3.
    D.G. Morris:Mechanical Behavior of Nanostructured Materials, Trans Tech Publications, Aedermannsdorf, Switzerland, 1998, pp. 1–18.Google Scholar
  4. 4.
    C. Suryanarayana:Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.CrossRefGoogle Scholar
  5. 5.
    J. Ye and J.M. Schoenung:Adv. Eng. Mater., 2004, vol. 6, pp. 656–64.CrossRefGoogle Scholar
  6. 6.
    C.C. Koch:Nanostruct. Mater., 1993, vol. 2, pp. 109–23.CrossRefGoogle Scholar
  7. 7.
    F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia:J. Mater. Res., 2001, vol. 16, pp. 3451–8.Google Scholar
  8. 8.
    B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, and F.A. Mohamed:Metall. Mater. Trans. A, 2003, vol. 34A, pp. 603–13.Google Scholar
  9. 9.
    J.A. Haber and W.E. Buhro:J. Am. Chem. Soc., 1998, vol. 120, pp. 10847–55.CrossRefGoogle Scholar
  10. 10.
    Y.S. Park, K.H. Chung, N.J. Kim, and E.J. Lavernia:Mater. Sci. Eng., A, 2004, vol. 374, pp. 211–26.CrossRefGoogle Scholar
  11. 11.
    B.Q. Han, Z. Lee, D. Witkin, S. Nutt, and E.J. Lavernia:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1–9.Google Scholar
  12. 12.
    R. Chaim, Z. Shen, and M. Nygren:J. Mater. Res., 2004, vol. 19, pp. 2527–31.CrossRefGoogle Scholar
  13. 13.
    V. Mamedov:Powder Metall., 2002, vol. 45, pp. 322–25.CrossRefGoogle Scholar
  14. 14.
    J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir:Acta Mater., 2003, vol. 51, pp. 4487–95.CrossRefGoogle Scholar
  15. 15.
    J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, and Z.A. Munir:Appl. Phys. Lett., 2004, vol. 85, pp. 573–75.CrossRefGoogle Scholar
  16. 16.
    M. Omori:Mater. Sci. Eng., A, 2000, vol. 287, pp. 183–88.CrossRefGoogle Scholar
  17. 17.
    S.H. Risbud, J.R. Groza, and M.J. Kim:Phil. Mag. B, 1994, vol. 69, pp. 525–33.Google Scholar
  18. 18.
    G. Xie, O. Ohashi, T. Yoshioka, M. Song, K. Mitsuishi, H. Yasuda, K. Furuya, and T. Noda:Mater. Trans., 2001, vol. 42, pp. 1846–49.CrossRefGoogle Scholar
  19. 19.
    Y. Koizumi, T. Tanaka, Y. Minamino, N. Tsuji, K. Mizuuchi, and Y. Ohkanda:Mater. Trans., 2003, vol. 44, pp. 1604–12.CrossRefGoogle Scholar
  20. 20.
    H. Feng, Y. Zhou, D. Jia, and Q. Meng:Mater. Sci. Eng., A, 2005, vol. 390, pp. 344–49.CrossRefGoogle Scholar
  21. 21.
    T. Murakami, A. Kitahara, Y. Koga, M. Kawahara, H. Inui, and M. Yamaguchi:Mater. Sci. Eng., A, 1997, vols. 239–240, pp. 672–79.Google Scholar
  22. 22.
    S. Paris, E. Gaffet, F. Bernard, and Z.A. Munir:Scripta Mater., 2004, vol. 50, pp. 691–96.CrossRefGoogle Scholar
  23. 23.
    Y. Minamino, Y. Koizumi, N. Tsuji, N. Hirohata, K. Mizuuchi, and Y. Ohkanda:Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 133–143.CrossRefGoogle Scholar
  24. 24.
    S.H. Lee, K. Moon, H. Hong, and K. Lee:Intermetallurgy, 2003, vol. 11, pp. 1039–45.CrossRefGoogle Scholar
  25. 25.
    M.A. Venkataswamy, J.A. Schneider, J.R. Groza, A.K. Mukherjee, K. Yamazaki, and K. Shoda:Mater. Sci. Eng., A, 1996, vol. 207, pp. 153–58.CrossRefGoogle Scholar
  26. 26.
    M.S. El-Eskandarany:J. Alloys Compounds, 1998, vol. 279, pp. 263–71.CrossRefGoogle Scholar
  27. 27.
    J. He, J. Ye, E.J. Lavernia, D. Matejczyk, C. Bampton, and J.M. Schoenung:J. Mater. Sci., 2004, vol. 39, pp. 6957–64.CrossRefGoogle Scholar
  28. 28.
    F.J. Humphreys and M. Hatherly:Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1996.Google Scholar
  29. 29.
    F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia:Acta Mater., 2003, vol. 51, pp. 2777–91.Google Scholar
  30. 30.
    F. Tang, M. Hagiwara, and J.M. Schoenung:Scripta Mater., 2005, vol. 53, pp. 619–24.CrossRefGoogle Scholar
  31. 31.
    H.P. Klug and L.E. Alexander:X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, NY, 1974, pp. 634–82.Google Scholar
  32. 32.
    L. Ajdelsztajn, R. Rodriguez, F.L. Bastian, and E.J.P. Lavernia:Mater. Sci. Technol. Brief, 2000, vol. 2, pp. 5–9.Google Scholar
  33. 33.
    W.F. Gale and T.C. Totemeier:Smithells Metals Reference Book, Elsevier Butterworth-Heinemann, Oxford, United Kingdom, 2004.Google Scholar
  34. 34.
    R.A. Vandermeer and H. Hu:Acta Metall. Mater., 1994, vol. 42, pp. 3071–75.CrossRefGoogle Scholar
  35. 35.
    G. Lormad, J.C. Rouais, and C. Eyraud:Acta Metall., 1974, vol. 22, pp. 793–99.CrossRefGoogle Scholar
  36. 36.
    S.M. Wentworth:Fundamentals of Electromagnetics with Engineering Applications, John Wiley, Hoboken, NJ, 2005, pp. 226–29.Google Scholar
  37. 37.
    T. Nakamura, S. Tanaka, K. Hayakawa, H. Imaizumi, and Y. Nakagawa:Sosei to Kako, 2003, vol. 44, pp. 931–36.Google Scholar
  38. 38.
    H. Hu:Recovery and Recrystallization of Metals, Interscience Publisher, New York, NY, 1963.Google Scholar
  39. 39.
    E.A. Olevsky, E.R. Strutt, and M.A. Meyers:J. Mater. Proc. Technol., 2002, vol. 121, pp. 157–66.CrossRefGoogle Scholar
  40. 40.
    E. Arzt, M.F. Ashby, and K.E. Easterling:Metall. Trans. A, 1983, vol. 14A, pp. 211–21.Google Scholar
  41. 41.
    A.S. Helle, K.E. Easterling, and M.F. Ashby:Acta Metall., 1985, vol. 33, pp. 2163–74.CrossRefGoogle Scholar
  42. 42.
    F.B. Swinkels, D.S. Wilkinson, E. Arzt, and M.F. Ashby:Acta Metall., 1983, vol. 31, pp. 1829–40.CrossRefGoogle Scholar
  43. 43.
    Y. Wang, Z. Fu, and Q. Zhang:Key Eng. Mater., 2002, vols. 224–226, pp. 717–20.CrossRefGoogle Scholar
  44. 44.
    Y. Wang and Z. Fu:Mater. Sci. Eng., B, 2002, vol. 90, pp. 34–37.CrossRefGoogle Scholar
  45. 45.
    U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir:Mater. Sci. Eng., A, 2005, vol. 394, pp. 139–48.CrossRefGoogle Scholar
  46. 46.
    H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps the Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982, p. 21.Google Scholar
  47. 47.
    B.Q. Han and E.J. Lavernia:Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 417–21.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Jichun Ye
    • 1
  • Leonardo Ajdelsztajn
    • 1
  • Julie M. Schoenung
    • 1
  1. 1.the Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavis

Personalised recommendations