Advertisement

A complete class for linear estimation in a general linear model

  • C. Stępniak
Article

Summary

It is shown that in linear estimation both unbiased and biased, all unique (up to equivalence with respect to risk) locally best estimators and their limits constitute a complete class.

Key words and phrases

Linear model linear estimation unbiased or not complete class 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Farrell, R. H. (1968). Towards a theory of generalized Bayes tests,Ann. Math. Statist.,39, 1–22.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Ferguson, T. (1967).Mathematical Statistics, Academic Press, New York.zbMATHGoogle Scholar
  3. [3]
    Klonecki, W. and Zontek, S. (1985). On admissible estimation of regression parameters and variance components in mixed linear models,Preprint No. 334, Institute of Mathematics, Polish Academy of Sciences.Google Scholar
  4. [4]
    LaMotte, L. R. (1977). A canonical form for general linear model,Ann. Statist.,5, 787–789.MathSciNetCrossRefGoogle Scholar
  5. [5]
    LaMotte, L. R. (1980). Some results on biased linear estimation applied to variance component estimation,Mathematical Statistics and Probability: Proc. Sixth Intern. Confer., Wisła (Poland), Springer, New York, 266–274.Google Scholar
  6. [6]
    LaMotte, L. R. (1982). Admissibility in linear estimation,Ann. Statist.,10, 245–255.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Olsen, A., Seely, J. and Birkes, D. (1976). Invariant quadratic unbiased, estimation for two variance components,Ann. Statist.,4, 878–890.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Rao, C. R. (1976). Estimation of parameters in a linear model,Ann. Statist.,4, 1023–1037, Correction (1979),7, 696.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Rockafellar, R. T. (1970).Convex Analysis, Princeton University Press.Google Scholar
  10. [10]
    Stępniak, C. (1983). Lower bound of risk in linear unbiased estimation and its application.Ann. Inst. Statist. Math.,35, 375–378.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Stępniak, C. (1984). On admissible estimators in a, linear model,Biom. J.,26, 815–816.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Stępniak, C. (1986). Admissible linear estimators in a linear model with the natural parameter space,Bull. Inform. Cybern.,22, 71–77.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1987

Authors and Affiliations

  • C. Stępniak
    • 1
  1. 1.Agricultural University of LublinLublinPoland

Personalised recommendations