Advertisement

Materials and Structures

, Volume 30, Issue 9, pp 533–544 | Cite as

Moisture in concrete subjected to different kinds of curing

  • Bertil Persson
Scientific Reports

Abstract

This article outlines an experimental and numerical study of moisture in concrete subjected to air, water or sealed curing. For this purpose, columns of eight qualities of concrete were studied at 3 different ages each over a period of 450 days. Parallel studies of hydration, internal relative humidity, self-desiccation and strength were carried out. Finally the article presents an analysis of the internal relative humidity and the mechanisms of moisture transfer by modelling the diffusivity and the capillary conditions of 4 of the concretes. The project was carried out between the years 1989 and 1992.

Keywords

Silica Fume Moisture Diffusivity Water Penetration High Performance Concrete Concrete Column 

Résumé

Cet article présente une étude expérimentale et numérique de l'humidité du béton soumis à l'air, à l'eau ou à une cure sous enduit de protection. À cet effet, des colonnes faites de huit qualités de béton ont été étudiées à 3 âges différentes sur une période de 450 jours. Des études parallèles ont égaleent été menées sur l'hydratation, l'humidité interne relative, l'autodessication et la résistance. Enfin, l'article présente une analyse de l'humidité relative interne et des mécanismes de transfert d'humidité par modélisation de la diffusion et de la capillarité de 4 de ces bétons. Ce projet de recherche a été mené entre 1989 et 1992.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Powers, T. C. and Brownyard, T. L., ‘Studies of physical properties of hardened Portland cement paste’, Research Laboratoires of the Portland Cement Association, Bulletin 22,Journal of the American Concrete Institute, Oct. 1946–April 1947, Proceedings, Vol. 43. (1947), 708–712, 984–987.Google Scholar
  2. [2]
    Tuutti, K., ‘Corrosion of steel in conrete’, The Institute of Cement and Concrete Research, Report Fo 4:82. (CBI, Stockholm, 1982) 277–286, 302–303.Google Scholar
  3. [3]
    Fagerlund, G., ‘The critical degree of saturation method—A general method of estimating the frost resistance of materials and structures’, The Swedish Institue of Cement and Concrete Research, Report Fo 12:76. (CBI, Stockholm 1976).Google Scholar
  4. [4]
    Fagerlund, G., ‘Influence of Environental factors on the Frost Resistance of Concrete’, TVBM-3059, Lund Institute of Technology (Division of Building Materials, Lund, 1994) 19–22.Google Scholar
  5. [5]
    Nilsson, L-O., ‘Moisture Problems at Concrete Floors’, TVBM-3002 (Lund Institute of Technology, Division of Building Materials, Lund, 1980) 36–51.Google Scholar
  6. [6]
    Hedenblad, G., ‘Moisture Permeability of Mature Concrete, Cement Mortar and Cement Paste’, Doctoral Thesis, TVBM-1014, Lund Institute of Technology, Division of Building Materials, (1993) 44, 45, 47–60.Google Scholar
  7. [7]
    Persson, B., ‘Hydration, structure and strength of High Performance Concrete’, Laboratory data and calculations’, Report TVBM-7011, Lund Institute of Technology, Division of Building Materials (1992) 76–102, 195–196 211.Google Scholar
  8. [8]
    Hassanzadeh, M., ‘Fracture mechanical properties’, Report M4:05 (Lund Institute of Technology, Division of Building Materials, Lund, 1992) 8–13.Google Scholar
  9. [9]
    ASTM E 104-85 ‘Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions’ (The American Society for Testing and Materials. Philadelphia, 1985) 33–34, 637.Google Scholar
  10. [10]
    Persson, B., Hydration, structure and strength of High Performance Concrete’, Licentiate Thesis, Report TVBM-1009, Lund Institute of Technology, Division of Building Materials, Lund, 1992), 225–254, 317–335.Google Scholar
  11. [11]
    Persson, B. ‘Hydration and Strength of High Performance Concrete’, Advanced Cement Based Material (Elsevier Science Inc., New York, 1996) 107–123.Google Scholar
  12. [12]
    Persson, B., ‘Self-desiccation and its importance in concrete technology’,Mater. Struct. 30 (199) (1997) 293–305.CrossRefGoogle Scholar
  13. [13]
    Norling, Mjörnell K., ‘Self-desiccation in concrete’, Report P-94:2, Division of Building Materials, Chalmers University of Technology, Gothenburg, 1993, 21–28.Google Scholar
  14. [14]
    Persson, K., ‘(Early) basic creep of high-performance concrete’, Proceedings of the 4th International Symposium on Utilization of High-strength/High-performance Concrete, Paris, 1996, 405–414.Google Scholar
  15. [15]
    Persson, B., ‘Self-desiccating High-Strength Concrete Slabs’, Proceedings at the Symposium of High-Strength Concrete, Lillehammer, Norway 1993, Edited by Holand and Sellevold, 882–889.Google Scholar
  16. [16]
    Hedenblad, G. and Janz, M., ‘Effect of alkali on the measured internal relative humidity in the concrete’, Report TVBM-3057, Lund Institute of Technology, Division of Building Materials, Lund, 1994, 5–12Google Scholar
  17. [17]
    Jonasson, J-E., ‘Modelling of Temperature, Moisture and Stresses in Young Concrete’, Doctoral Thesis, Report 153D, Division of Structural Engineering, Department of Civil and Mining Engineering, Luleå University of Technology, Luleå, 1994, 129–146.Google Scholar

Copyright information

© RILEM 1997

Authors and Affiliations

  • Bertil Persson
    • 1
  1. 1.Lund Institute of Technology, Division Building MaterialsUniversity of LundLundSweden

Personalised recommendations