# Some test statistics for the structural coefficients of the multivariate linear functional relationship model

Article

First Online:

- 14 Downloads
- 2 Citations

## Summary

For the testing problem concerning the coefficients of the multivariate linear functional relationship model, the distribution of a statistic previously proposed by A. P. Basu depends on the unknown covariance matrix* V* of errors, so limiting its applicability. This article proposes new test statistics with sampling distributions which are independent of the unknown parameters for the cases where

*is either unknown or known only up to a proportionality factor. The exact distributions of the test statistics are also discussed.*

**V**## Key words and phrases

Linear functional relationships tests of hypotheses exact distributions## Preview

Unable to display preview. Download preview PDF.

## References

- [1]Acton, Forman S. (1959).
*Analysis of Straight-Line Data*, Wiley, New York.zbMATHGoogle Scholar - [2]
- [3]Anderson, T. W. (1958).
*An Introduction to Multivariate Statistical Analysis*, Wiley, New York.zbMATHGoogle Scholar - [4]Basu, A. P. (1969). On some tests for several linear relations,
*J. Roy. Statist. Soc.*, B,**31**, 65–71.MathSciNetzbMATHGoogle Scholar - [5]Creasy, M. A. (1958). Confidence limits for the gradient in the linear functional relationship,
*J. Roy. Statist. Soc.*, B,**18**, 65–69.MathSciNetzbMATHGoogle Scholar - [6]Geary, R. C. (1942). Inherent relations between random variables,
*Proc. R. Irish Acad.*, Ser. A,**47**, 63–76.MathSciNetzbMATHGoogle Scholar - [7]Healy, John D. (1980). Maximum likelihood estimation of a multivariate linear functional relationship,
*J. Multivar. Anal.*,**10**, 243–251.MathSciNetCrossRefGoogle Scholar - [8]Jensen, D. R. and Solomon, H. (1972). A Gaussian approximation to the distribution of a definite quadratic form,
*J. Amer. Statist. Ass.*,**67**, 898–902.zbMATHGoogle Scholar - [9]Keller, W. J. and Wansbeck, Tom (1983). Multivariate methods for quantitative and qualitative data,
*J. Econometrics*,**22**, 91–111.MathSciNetCrossRefGoogle Scholar - [10]Kummel, Chas H. (1879). Reduction of observed equations which contain more than one observed quantity,
*Analyst.*,**6**, 97–105.CrossRefGoogle Scholar - [11]Mathai, A. M. and Pillai, K. C. S. (1982). Further results on the trace of a noncentral Wishart matrix,
*Commun. Statist. Theor. Meth.*,**11**(10), 1077–1086.MathSciNetCrossRefGoogle Scholar - [12]Oman, D. S. and Zacks, S. (1981). A mixture approximation to the distribution of a weighted sum of chi-squared variables,
*J. Statist. Comput. Simul.*,**13**, 215–224.CrossRefGoogle Scholar - [13]Pearson, Karl (1901). On lines and planes of closest fit to systems of points in space,
*Philos. Mag.*,**2**, 559–572.CrossRefGoogle Scholar - [14]Provost, S. B. (1984).
*Distribution Problems Connected with the Multivariate Linear Functional Relationship Model*, Ph.D. dissertation, McGill University, Montreal.Google Scholar - [15]Robbins, Herbert (1948). The distribution of a definite quadratic form,
*Ann. Math. Statist.*,**19**, 266–270.MathSciNetCrossRefGoogle Scholar - [16]Solomon, H. and Stephens, M. (1977). Distribution of a sum of weighted chi-squared variables,
*J. Amer. Statist. Ass.*,**72**, Theor. Meth., 881–885.zbMATHGoogle Scholar - [17]Theil, H. (1950). A rank invariant method of linear and polynomial regression analysis,
*Nederl. Akad. Wetensch. Proc.*, Ser. A,**53**, 386–392, 521–525 and 1397–1412.MathSciNetzbMATHGoogle Scholar - [18]
- [19]van Uven, M. J. (1930). Adjustment of
*N*points (in*n*-dimensional space) to the best linear (*n*−1)-dimensional space,*K. Akad. Wetens. Amsterdam Proc. Sec. Sciences*,**33**, 143–157; 307–326.zbMATHGoogle Scholar - [20]Villegas, C. (1961). Maximum likelihood estimation of a linear functional relationship,
*Ann. Math. Statist.*,**32**, 1048–1062.MathSciNetCrossRefGoogle Scholar - [21]Villegas, C. (1964). Confidence region for a linear relation,
*Ann. Math. Statist.*,**35**, 780–788.MathSciNetCrossRefGoogle Scholar - [22]Wald, Abraham (1940). The fitting of straight lines if both variables are subject to error,
*Ann. Math. Statist.*,**11**, 284–300.MathSciNetCrossRefGoogle Scholar

## Copyright information

© The Institute of Statistical Mathematics, Tokyo 1986