# A bayesian approach to the probability density estimation

- 36 Downloads
- 9 Citations

## Summary

A Bayesian procedure for the probability density estimation is proposed. The procedure is based on the multinomial logit transformations of the parameters of a finely segmented histogram model. The smoothness of the estimated density is guaranteed by the introduction of a prior distribution of the parameters. The estimates of the parameters are defined as the mode of the posterior distribution. The prior distribution has several adjustable parameters (hyper-parameters), whose values are chosen so that ABIC (Akaike's Bayesian Information Criterion) is minimized.

The basic procedure is developed under the assumption that the density is defined on a bounded interval. The handling of the general case where the support of the density function is not necessarily bounded is also discussed. The practical usefulness of the procedure is demonstrated by numerical examples.

## Keywords

BAYESIAN Approach Entropy Maximization Principle Bayesian Procedure Probability Density Estimation Maximum Likelihood Principle## Preview

Unable to display preview. Download preview PDF.

## References

- [1]Ahrens, L. H. (1965). Observations of the Fe−Si−Mg relationship in chondrites,
*Geochimica et Cosmochimica Acta*,**29**, 801–806.CrossRefGoogle Scholar - [2]Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle,
*2nd International Symposium on Information Theory*, (eds. B. N. Petrov and F. Csaki), Akademiai Kiado, Budapest, 267–281.zbMATHGoogle Scholar - [3]Akaike, H. (1977). On entropy maximization principle,
*Applications of Statistics*, (ed. Krishnaiah, P. R.), North-Holland, Amsterdam 27–41.zbMATHGoogle Scholar - [4]Akaike, H. and Arahata, E. (1978). GALTHY, A probability density estimation,
*Computer Science Monographs*, No. 9, The Institute of Statistical Mathematics, Tokyo.Google Scholar - [5]Akaike, H. (1980). Likelihood and Bayes procedure,
*Bayesian Statistics*, (eds. J. M. Bernardo, M. H. De Groot, D. U. Lindley and A. F. M. Smith), University Press, Valencia, Spain.zbMATHGoogle Scholar - [6]Boneva, L. I., Kendall, D. G. and Stefanov, I. (1971). Spline transformations: three new diagnostic aids for the statistical data-analyst,
*J. R. Statist. Soc.*, B,**33**, 1–71.MathSciNetzbMATHGoogle Scholar - [7]Burch, C. R. and Parsons, I. T. (1976). Squeeze significance tests,
*Applied Statistics*,**25**, 287–291.CrossRefGoogle Scholar - [8]Good, I. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties for probability densities,
*Biometrika*,**58**, 255–277.MathSciNetCrossRefGoogle Scholar - [9]Good, I. J. and Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data,
*J. Amer. Statist. Ass.*,**75**, 42–56.MathSciNetCrossRefGoogle Scholar - [10]Ishiguro, M. and Sakamoto, Y. (1983). A Bayesian approach to binary response curve estimation,
*Ann. Inst. Statist. Math.*, B,**35**, 115–137.CrossRefGoogle Scholar - [11]Leonard, Tom (1978). Density estimation, stochastic processes, and prior information,
*J. R. Statist. Soc.*, B,**40**, 113–146.MathSciNetzbMATHGoogle Scholar - [12]Maguire, B. A., Pearson, E. S. and Wynn, A. H. A. (1952). The time intervals between industrials accidents,
*Biometrika*,**39**, 168–180.CrossRefGoogle Scholar - [13]Parzen, E. (1962). On estimation of a probability density and mode,
*Ann. Math. Statist.*,**33**, 1065–1076.MathSciNetCrossRefGoogle Scholar - [14]Rosenblatt, M. (1956). Remarks on some non-parametric estimates of a density function,
*Ann. Math. Statist.*,**27**, 832–837.MathSciNetCrossRefGoogle Scholar - [15]Whittle, P. (1958). On the smoothing of probability density functions,
*J. R. Statist. Soc.*, B,**20**, 334–343.MathSciNetzbMATHGoogle Scholar