The maximum full and partial likelihood estimators in the proportional hazard model

  • Takemi Yanagimoto
  • Toshinari Kamakura


The maximum full likelihood estimator in the proportional hazard model is explored in relation to the maximum partial likelihood estimator. In the scalar parameter case both the estimators have a common sign, and the absolute value of the former is strictly greater than that of the latter except for trivial cases. We point out also that the maximum full likelihood estimator after a simple modification of the likelihood equation provides a good approximation to the maximum partial likelihood estimator. Similar results are valid for the likelihood ratio tests.


Likelihood Estimator Failure Time Partial Likelihood Likelihood Equation Full Likelihood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle,2nd Inter Symp. on Information Theory (eds. Petrov, B. N. and Csaki, F.), Akademia Kiado, Budapest, 267–281.zbMATHGoogle Scholar
  2. [2]
    Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators,J. R. Statist. Soc., B,32, 283–301.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Breslow, N. (1972). Discussion on Professor Cox's paper,J. R. Statist. Soc., B,34, 187–220.MathSciNetGoogle Scholar
  4. [4]
    Breslow, N. (1981). Odds ratio estimators when the data are sparse,Biometrika,68, 73–84.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Breslow, N. (1982). Covariance adjustment of relative-risk estimates in matched studies,Biometrics,38, 661–672.CrossRefGoogle Scholar
  6. [6]
    Cox, D. R. (1970).The Analysis of Binary Data, Methuen & Co., London.zbMATHGoogle Scholar
  7. [7]
    Cox, D. B. (1972). Regression models and life tables (with discussion),J. R. Statist. Soc., B,34, 187–220.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Cox, D. R. (1975). Partial likelihood,Biometrika,62, 269–276.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Farewell, V. T. (1979). Some results on the estimation of logistic models based on retrospective data,Biometrika,66, 27–32.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Farewell, V. T. and Prentice, R. L. (1980). The approximation of partial likelihood with emphasis on case-control studies,Biometrika,67, 273–278.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Gail, M. H., Lubin, J. H. and Rubinstein, L. V. (1981). Likelihood calculations for matched case-control studies and survival studies with tied death times,Biometrika,68, 703–707.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Hardy, G. H., Littlewood, J. E. and Polya, G. (1952).Inequalities, University Press, Cambridge.zbMATHGoogle Scholar
  13. [13]
    Harkness, W. L. (1965). Properties of the extended hypergeometric distribution,Ann. Math. Statist.,36, 938–945.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Hauck, W. W., Anderson, S. and Leahy, F. L. (1982). Finite-sample properties of some old and some new estimators of a common odds ratio from multiple 2×2 tables,J. Amer. Statist. Ass.,77, 145–152.zbMATHGoogle Scholar
  15. [15]
    Howard, S. (1972). Discussion on Professor Cox's paper,J. R. Statist. Soc., B,34, 187–220.Google Scholar
  16. [16]
    Kamakura, T. and Yanagimoto, T. (1983). Evaluation of the regression parameter estimators in the proportional hazard model,Biometrika,70, 530–533.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Korn, E. L. and Whittemoore, A. S. (1979). Methods for analysing panel studies of acute health effects of air pollution,Biometrics,35, 795–802.CrossRefGoogle Scholar
  18. [18]
    Lubin, J. H. (1981). An empirical evaluation of the use of conditional and unconditional likelihoods for case-control data,Biometrika,68, 567–571.CrossRefGoogle Scholar
  19. [19]
    Mckinlay, S. M. (1975). The effect of bias on estimators of relative risk for pairmatched and stratiffied samples,J. Amer. Statist. Ass.,70, 859–864.CrossRefGoogle Scholar
  20. [20]
    Miller, R. G. (1980).Survival Analysis, Wiley, New York.Google Scholar
  21. [21]
    Nelder, W. and Wedderburn, R. W. M. (1972). Generalized linear model,J. R. Statist. Soc., A,135, 370–384.CrossRefGoogle Scholar
  22. [22]
    Pregibon, D. (1982). Resistant fits for some commonly used logistic models with medical applications,Biometrics,38, 485–498.CrossRefGoogle Scholar
  23. [23]
    Prentice, R. L. and Breslow, N. E. (1978). Retrospective studies and failure time models,Biometrika,65, 153–158.CrossRefGoogle Scholar
  24. [24]
    Thomas, M. A. and Taub, A. E. (1982). Calculating binomial probabilities when the trial probabilities are unequal,Statist. Comput. & Simul.,14, 125–131.CrossRefGoogle Scholar
  25. [25]
    Yanagimoto, T. and Kamakura, T. (1983). Analysis for the longitudinal data using point process models—Case of the evaluation of environmental factors to the asthma attacks (in Japanese),Jap. J. Appl. Statist.,11, 39–47.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1984

Authors and Affiliations

  • Takemi Yanagimoto
  • Toshinari Kamakura

There are no affiliations available

Personalised recommendations