A test for additional information in canonical correlation analysis

  • Yasunori Fujikoshi


In canonical correlation analysis a hypothesis concerning the relevance of a subset of variables from each of the two given variable sets is formulated. The likelihood ratio statistic for the hypothesis and an asymptotic expansion for its null distribution are obtained. In discriminant analysis various alternative forms of a hypothesis concerning the relevance of a specified variable subset are also discussed.

AMS 1980 subject classifications

Primary 62H15 secondary 62H10 

Key words and phrases

Canonical correlation analysis additional information likelihood ratio statistic null distribution discriminant analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, T. W. (1958).Introduction to Miltivariate Statistical Analysis, John Wiley, New York.Google Scholar
  2. [2]
    Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria,Biometrika,36, 317–346.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Fisher, R. A. (1938). The statistical utilization of multiple measurements.Ann. Eugen., 8, 376–386.CrossRefGoogle Scholar
  4. [4]
    Gabriel, K. R. (1968). Simultaneous test procedures in multivariate analysis of variance,Biometrika,55, 489–504.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Hannan, E. J. (1970).Multiple Time Series, John Wiley, New York.CrossRefGoogle Scholar
  6. [6]
    Hotelling, H. (1936). Relations between two sets of variates,Biometrika,28, 321–377.CrossRefGoogle Scholar
  7. [7]
    Laha, R. G. (1954). On som problems in canonical correlations,Sankhyã,14, 61–66.MathSciNetzbMATHGoogle Scholar
  8. [8]
    McKay, R. J. (1977). Simultaneous procedures for variable selection in multiple discriminant analysis,Biometrika,64, 283–290.MathSciNetCrossRefGoogle Scholar
  9. [9]
    McKay, R. J. (1977). Variable selection in multivariate regression: an application of simultaneous test procedures,J. R. Statist. Soc., B,39, 371–380.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Rao, C. R. (1949). Test of significance in multivariate analysis,Biometrika,35, 58–79.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Rao, C. R. (1970). Inference on discriminant function coefficients,Essays in Prob. Statist. (ed. R. C. Bose), 587–602.Google Scholar
  12. [12]
    Rao, C. R. (1973).Linear Statistical Inference and Its Applications, John Wiley, New York.CrossRefGoogle Scholar
  13. [13]
    Siotani, M. (1957). Effect of the additional variates on the canonical correlation co-efficients.Proc. Inst. Statist. Math.,5, 52–57.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1982

Authors and Affiliations

  • Yasunori Fujikoshi
    • 1
  1. 1.Hirosima universityHiroshimaJapan

Personalised recommendations