Annals of the Institute of Statistical Mathematics

, Volume 33, Issue 2, pp 191–198

# On the joint distribution of two discrete random variables

• John Panaretos
Article

## Summary

LetX, Y be two discrete random variables with finite support andXY. Suppose that the conditional distribution ofY givenX can be factorized in a certain way. This paper provides a method of deriving the unique form of the marginal distribution ofX (and hence the joint distribution of (X, Y)) when partial independence only is assumed forY andX−Y.

60E05

## Key words and phrases

Conditional distribution power series distribution binomial distribution characterization

## References

1. [1]
Chatterji, S. K. (1963). Some elementary characterizations of the Poisson distribution,Amer. Math. Monthly,70, 958–964.
2. [2]
Moran, P. A. P. (1952). A characteristic property of the Poisson distribution,Proc. Camb. Phil. Soc.,48, 206–207.
3. [3]
Panaretos, J. (1979). On characterizing some discrete distributions using an extension of the Rao-Rubin theorem, to appear inSankhyà.Google Scholar
4. [4]
Patil, G. P. and Ratnaparkhi, M. V. (1975). Problems of damaged random variables and related characterizations,Statist. Distrib. in Scient. Work, Vol. 3 (eds. G. P. Patil, S. Kotz and J. K. Ord), D. Reidal Publ. Co., Utrecht, 255–270.Google Scholar
5. [5]
Patil, G. P. and Seshadri, V. (1964). Characterization theorems for some univariate discrete distributions,J. Roy. Statist. Soc., B,26, 286–292.
6. [6]
Rao, C. R. and Rubin, H. (1964). On a characterization of the Poisson distribution,Sankhyà, A,26, 295–298.
7. [7]
Shanbhag, D. N. (1977). An extension of the Rao-Rubin characterization of the Poisson distribution,J. Appl. Prob.,14, 640–646.
8. [8]
Shanbhag, D. N. and Panaretos, J. (1979). Some results related to the Rao-Rubin characterization of the Poisson distribution,Aust. J. Statist.,21, 78–83.
9. [9]
Shanbhag, D. N. and Taillie, C. (1980). An extension of the Patil-Taillie characterization of the Poisson distribution, to appear inSankhyà.Google Scholar