Characterization of equireplicated variance-balanced block designs

  • Sanpei Kageyama
  • Takumi Tsuji


Block Design Incidence Matrix Balance Design Balance Incomplete Block Design Binary Block 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Atiquallah, M. (1961). On a property of balanced designs,Biometrika,48, 215–218.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bhaskararao, M. (1966). A note on equireplicate balanced designs withb=v.Calcutta Statist. Ass. Bull.,15, 43–44.CrossRefGoogle Scholar
  3. [3]
    Bose, R. C. (1950).Least Squares Aspects of Analysis of Variance, Institute of Statistics, Univ. of North Carolina.Google Scholar
  4. [4]
    Connor, W. S. (1952). On the structure of balanced incomplete block designs,Ann. Math. Statist.,23, 57–71.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Dey, A. (1970). On construction of balancedn-ary block designs,Ann. Inst. Statist. Math.,22, 389–393.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hedayat, A. and Federer, W. T. (1974). Pairwise and variance balanced incomplete block designs,Ann. Inst. Statist. Math.,26, 331–338.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Ishii, G. (1977). Personal communication to S. Kageyama.Google Scholar
  8. [8]
    John, P. W. M. (1964). Balanced designs with unequal numbers of replicates,Ann. Math. Statist.,35, 897–899.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kageyama, S. (1974). Reduction of associate classes for block designs and related combinatorial arrangements,Hiroshima Math. J.,4, 527–618.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Kageyama, S. (1976). Constructions of balanced block designs,Utilitas Math.,9, 209–229.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Kageyama, S. (1977). Note on combinatorial arrangements,Hiroshima Math. J.,7, 449–458.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Kiefer, J. (1975). Balanced block designs and generalized Youden designs, I. Construction (Patchwork),Ann. Statist.,3, 109–118.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Kulshreshtha, A. C., Dey, A. and Saha, G. M. (1972). Balanced designs with unequal replications and unequal block sizes,Ann. Math. Statist.,43, 1342–1345.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Morgan, E. J. (1977). Construction of balancedn-ary designs,Utilitas Math.,11, 3–31.MathSciNetGoogle Scholar
  15. [15]
    Murty, J. S. and Das, M. N. (1968). Balancedn-ary block designs and their uses,J. Indian Statist. Ass. 5, 73–82.Google Scholar
  16. [16]
    Rao, V. R. (1958). A note on balanced designs,Ann. Math. Statist.,29, 290–294.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Saha, G. M. (1975). On construction of balanced ternary designs,Sankhyã, B,37, 220–227.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Saha, G. M. and Dey, A. (1973). On construction and uses of balancedn-ary designs,Ann. Inst. Statist. Math.,25, 439–445.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Tocher, K. D. (1952). Design and analysis of block experiments,J. R. Statist. Soc., B,14, 45–100.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1980

Authors and Affiliations

  • Sanpei Kageyama
    • 1
  • Takumi Tsuji
    • 1
  1. 1.Hiroshima UniversityHiroshimaJapan

Personalised recommendations