Advertisement

Characterization of equireplicated variance-balanced block designs

  • Sanpei Kageyama
  • Takumi Tsuji
Article
  • 16 Downloads

Keywords

Block Design Incidence Matrix Balance Design Balance Incomplete Block Design Binary Block 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiquallah, M. (1961). On a property of balanced designs,Biometrika,48, 215–218.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bhaskararao, M. (1966). A note on equireplicate balanced designs withb=v.Calcutta Statist. Ass. Bull.,15, 43–44.CrossRefGoogle Scholar
  3. [3]
    Bose, R. C. (1950).Least Squares Aspects of Analysis of Variance, Institute of Statistics, Univ. of North Carolina.Google Scholar
  4. [4]
    Connor, W. S. (1952). On the structure of balanced incomplete block designs,Ann. Math. Statist.,23, 57–71.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Dey, A. (1970). On construction of balancedn-ary block designs,Ann. Inst. Statist. Math.,22, 389–393.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hedayat, A. and Federer, W. T. (1974). Pairwise and variance balanced incomplete block designs,Ann. Inst. Statist. Math.,26, 331–338.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Ishii, G. (1977). Personal communication to S. Kageyama.Google Scholar
  8. [8]
    John, P. W. M. (1964). Balanced designs with unequal numbers of replicates,Ann. Math. Statist.,35, 897–899.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kageyama, S. (1974). Reduction of associate classes for block designs and related combinatorial arrangements,Hiroshima Math. J.,4, 527–618.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Kageyama, S. (1976). Constructions of balanced block designs,Utilitas Math.,9, 209–229.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Kageyama, S. (1977). Note on combinatorial arrangements,Hiroshima Math. J.,7, 449–458.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Kiefer, J. (1975). Balanced block designs and generalized Youden designs, I. Construction (Patchwork),Ann. Statist.,3, 109–118.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Kulshreshtha, A. C., Dey, A. and Saha, G. M. (1972). Balanced designs with unequal replications and unequal block sizes,Ann. Math. Statist.,43, 1342–1345.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Morgan, E. J. (1977). Construction of balancedn-ary designs,Utilitas Math.,11, 3–31.MathSciNetGoogle Scholar
  15. [15]
    Murty, J. S. and Das, M. N. (1968). Balancedn-ary block designs and their uses,J. Indian Statist. Ass. 5, 73–82.Google Scholar
  16. [16]
    Rao, V. R. (1958). A note on balanced designs,Ann. Math. Statist.,29, 290–294.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Saha, G. M. (1975). On construction of balanced ternary designs,Sankhyã, B,37, 220–227.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Saha, G. M. and Dey, A. (1973). On construction and uses of balancedn-ary designs,Ann. Inst. Statist. Math.,25, 439–445.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Tocher, K. D. (1952). Design and analysis of block experiments,J. R. Statist. Soc., B,14, 45–100.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1980

Authors and Affiliations

  • Sanpei Kageyama
    • 1
  • Takumi Tsuji
    • 1
  1. 1.Hiroshima UniversityHiroshimaJapan

Personalised recommendations