Advertisement

A continuous form of post-stratification

  • David R. Brillinger
Article
  • 20 Downloads

Summary

The problem of estimating a given integral of a regression function is considered. The proposed estimate may be viewed as continuous analog of the post-stratified mean of sample survey theory. The asymptotic distribution of the estimate is derived, under regularity conditions, and an estimate of its variance suggested.

Keywords

Regression Function Continuous Form Continuous Analog Smooth Regression Nonlinear Regression Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Benedetti, J. K. (1977). On the nonparametric estimation of regression functions.J. R. Statist. Soc., B,39, 248–253.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Chung, K. L. (1949). An estimate concerning the Kolmogorov limit distribution,Trans. Amer. Math. Soc.,67, 36–50.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Clark, R. M. (1977). Non-parametric estimation of a smooth regression function,J. R. Statist. Soc., B,39, 107–113.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Cochran, W. G. (1963).Sampling Techniques, J. Wiley, New York.zbMATHGoogle Scholar
  5. [5]
    Feller, W. (1966).An Introduction to Probability Theory and its Applications, Vol. II, J. Wiley, New York.zbMATHGoogle Scholar
  6. [6]
    Koksma, J. F. (1942). A general theorem from the theory of uniform distribution modulo 1,Mathematica Zutphen B,11, 7–11.MathSciNetGoogle Scholar
  7. [7]
    Mosteller, F. and Tukey, J. W. (1977).Data Analysis and Regression, Addison-Wesley, Reading, Mass.Google Scholar
  8. [8]
    Nadaraya, E. A. (1964). On estimating regression,Theory Prob. Appl.,9, 141–142.CrossRefGoogle Scholar
  9. [9]
    Priestley, M. B. and Chao, M. T. (1972). Non-parametric function fitting.J. R. Statist. Soc., B,34, 385–392.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Révész, P. (1976). On strong approximation of the multidimensional empirical process,Ann. Prob.,4, 729–743.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Rosenblatt, M. (1969). Conditional probability density and regression estimates, inMultivariate Analysis-II (ed. P. R. Krishnaiah), Academic, New York, 25–31.Google Scholar
  12. [12]
    Singh, R. S. (1977). Applications of estimators of a density and its derivatives to certain statistical problems.J. R. Statist. Soc., B,39, 357–363.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Stone, C. (1975). Nearest neighbor estimators of a nonlinear regression function, inProc. Computer Sci. and Statistics: 8th Annual Symp. on the Interface, Los Angeles, Univ. of Calif., 413–418.Google Scholar
  14. [14]
    Stone, C. (1977). Consistent nonparametric regression,Ann. Statist.,5, 595–620.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Watson, G. S. (1964). Smooth regression analysis,Sankhyã, A,26, 359–372.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Zaremba, S. K. (1968). Some applications of multidimensional integration by parts,Ann. Polon. Math.,21, 85–96.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1979

Authors and Affiliations

  • David R. Brillinger
    • 1
  1. 1.The University of CaliforniaBerkeley

Personalised recommendations