Advertisement

Density estimation for Markov processes using delta-sequences

  • B. L. S. Prakasa Rao
Article

Keywords

Markov Process Density Estimation Density Estimator Finite Variance Positive Type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Basawa, I. V. and Prakasa Rao, B. L. S. (1979).Statistical Inference for Stochastic Processes: Theory and Methods, Academic Press, London, (to appear).Google Scholar
  2. [2]
    Borwanker, J. D. (1967).Some Asymptotic Results for Stationary Processes, Ph.D. Thesis, University of Minnesota, USA.Google Scholar
  3. [3]
    Doob, J. L. (1953).Stochastic Processes, Wiley, New York.zbMATHGoogle Scholar
  4. [4]
    Korevaar, J. (1971).Mathematical Methods, Academic Press, New York.Google Scholar
  5. [5]
    Prakasa Rao, B. L. S. (1977). Berry-Esseen type bound for density estimators of stationary Markov processes,Bull. Math. Statist.,17, 15–21.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Rosenblatt, M. (1970). Density estimates and Markov sequences, inNonparametric Techniques in Statistical Inference, Cambridge University Press, London.Google Scholar
  7. [7]
    Rosenblatt, M. (1971). Curve estimates,Ann. Math. Statist.,42, 1815–1842.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Roussas, G. G. (1969). Nonparametric estimation in Markov processes,Ann. Inst. Statist. Math.,21, 73–87.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Walter, G. and Blum, J. (1976). Probability density estimation using delta-sequences, (Preprint) The University of Wisconsin, Milwaukee, USA.zbMATHGoogle Scholar
  10. [10]
    Wertz, W. (1971). Empirische betrachtungen und normal approximation bei dichteschatzungen,Operat. Res. Verfahren,8, 430–448.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1978

Authors and Affiliations

  • B. L. S. Prakasa Rao
    • 1
  1. 1.Indian Statistical InstituteNew Delhi

Personalised recommendations