Density estimation for Markov processes using delta-sequences

  • B. L. S. Prakasa Rao


Markov Process Density Estimation Density Estimator Finite Variance Positive Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Basawa, I. V. and Prakasa Rao, B. L. S. (1979).Statistical Inference for Stochastic Processes: Theory and Methods, Academic Press, London, (to appear).Google Scholar
  2. [2]
    Borwanker, J. D. (1967).Some Asymptotic Results for Stationary Processes, Ph.D. Thesis, University of Minnesota, USA.Google Scholar
  3. [3]
    Doob, J. L. (1953).Stochastic Processes, Wiley, New York.zbMATHGoogle Scholar
  4. [4]
    Korevaar, J. (1971).Mathematical Methods, Academic Press, New York.Google Scholar
  5. [5]
    Prakasa Rao, B. L. S. (1977). Berry-Esseen type bound for density estimators of stationary Markov processes,Bull. Math. Statist.,17, 15–21.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Rosenblatt, M. (1970). Density estimates and Markov sequences, inNonparametric Techniques in Statistical Inference, Cambridge University Press, London.Google Scholar
  7. [7]
    Rosenblatt, M. (1971). Curve estimates,Ann. Math. Statist.,42, 1815–1842.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Roussas, G. G. (1969). Nonparametric estimation in Markov processes,Ann. Inst. Statist. Math.,21, 73–87.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Walter, G. and Blum, J. (1976). Probability density estimation using delta-sequences, (Preprint) The University of Wisconsin, Milwaukee, USA.zbMATHGoogle Scholar
  10. [10]
    Wertz, W. (1971). Empirische betrachtungen und normal approximation bei dichteschatzungen,Operat. Res. Verfahren,8, 430–448.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1978

Authors and Affiliations

  • B. L. S. Prakasa Rao
    • 1
  1. 1.Indian Statistical InstituteNew Delhi

Personalised recommendations