The asymptotic behaviour of maximum likelihood estimators for stationary point processes

  • Yoshiko Ogata


Point Process Maximum Likelihood Estimator Renewal Process Predictable Process Complete Intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Billingsley, P. (1961).Statistical Inference for Markov Process, The University of Chicago Press, ChicagozbMATHGoogle Scholar
  2. [2]
    Billingsley, P. (1961). The Lindeberg-Lévy Theorem for martingales,Proc. Amer. Math. Soc.,12, 788–792.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Dellacherie, C. (1972).Capacities et Processus Stochastiques, Springer-Verlag, Heidelberg.zbMATHGoogle Scholar
  4. [4]
    Feller, W. (1966).An Introduction to Probability Theory and its Applications, Vol. 2. John Wiley & Sons, New York.zbMATHGoogle Scholar
  5. [5]
    Hawkes, A. G. and Oakes, D. (1974). A cluster process representation of a self-exiting point process,J. Appl. Prob.,11, 493–503.CrossRefGoogle Scholar
  6. [6]
    Kavanov, Yu. M., Lipster, R. Sh. and Shiryaev, A. N. (1975). Martingale method in the theory of point processes (in Russian),Proceeding of Vilnius Symposium U.S.S.R. Google Scholar
  7. [7]
    Meyer, P. A. (1972).Martingales and Stochastic Integrals I, Lecture Notes in Mathematics, 284, Springer, Berlin.zbMATHGoogle Scholar
  8. [8]
    Ozaki, T. (1977). Maximum likelihood estimation of Hawkes' self-exciting point process,Research Memorandom, No. 115, The Institute of Statistical Mathematics, Tokyo.Google Scholar
  9. [9]
    Vere-Jones, D. (1973).Lectures on Point Processes, Department of Statistics, University of California, Berkeley.Google Scholar
  10. [10]
    Vere-Jones, D. (1975). On updating algorithms and inference for stochastic point processes,Perspectives in probability and statistics, Gani, J. ed., Applied Probability Trust.Google Scholar
  11. [11]
    Aczel, J. (1966).Lectures on Functional Equations and their Applications, Academic Press, New York.zbMATHGoogle Scholar
  12. [12]
    Daley, D. J. and Vere-Jones, D. (1972). A summary of the theory of point processes,Stochastic point processes: statistical analysis, theory and applications, Lewis, A. W. ed., Wiley, New York.zbMATHGoogle Scholar
  13. [13]
    Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions,Proc. 5th Berkeley Symp. Math. Statist. Prob.,1, 221–233.Google Scholar
  14. [14]
    Meyer, P. A. (1966).Probability and Potentials, Blaisdell Publishing Co., Waltham.zbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1978

Authors and Affiliations

  • Yoshiko Ogata
    • 1
  1. 1.Victoria University of WellingtonWellingtonAustralia

Personalised recommendations