Advertisement

Materials and Structures

, Volume 17, Issue 6, pp 457–468 | Cite as

The hydration of tricalcium silicate

RILEM committee 68-MMH, Task Group 3
  • H. F. W. Taylor
  • P. Barret
  • P. W. Brown
  • D. D. Double
  • G. Frohnsdorff
  • V. Johansen
  • D. Ménétrier-Sorrentino
  • I. Odler
  • L. J. Parrott
  • J. M. Pommersheim
  • M. Regourd
  • J. F. Young
Technical Committees

Summary

Evidence on the mechanism and products of tricalcium silicate hydration is summarized, and present-day interpretations of that evidence critically discussed, partly with a view to supplying a basis for mathematical modeling of the hydration process. There is general agreement on many, broad features of the reaction and its products, and it should be possible to express many of the proposed hypotheses in mathematical form. Uncertainties nevertheless remain about many questions that are of essential importance if kinetic equations based on an unequivocal understanding of the mechanism are to be formulated. The paper concludes with a list of these questions.

Keywords

Induction Period Portland Cement Barrier Layer Cement Paste Calcium Silicate Hydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wu Z.-Q., Hriljac J., Hwang C. L., Young J. F.Orthosilicate analyses: a measure of hydration in pastes of alite and portland cement, Comm. Amer. Ceram. Soc., Vol. 66, No. 5, 1983, pp. C.86-C.87.CrossRefGoogle Scholar
  2. [2]
    Flint E. P., Wells L. S.Study of the system CaO−SiO 2−H2O at 30 C and of the reaction of water on the anhydrous calcium silicates, J. Res. Nat. Bur. Stand., Vol. 12, No. 6, 1934, pp. 751–783.CrossRefGoogle Scholar
  3. [3]
    Steinour H. H.The system CaO−SiO 2−H2O and the hydration of the calcium silicates, Chem. Revs., Vol. 40, No. 3, 1947, p. 391–460, and more recent studies.CrossRefGoogle Scholar
  4. [4]
    Brown P. W., Franz E., Frohnsdorff G., Taylor H. F. W.Analyses of the aqueous phase during early C 3S hydration, Cem. Concr. Res., Vol. 14, No. 2, 1984, pp. 257–262.CrossRefGoogle Scholar
  5. [5]
    Ménétrier D., Jawed I., Sun T.S., Skalny L.ESCA and SEM studies on early C 3S hydration, Cem. Concr. Res., Vol. 9, No. 4, 1979, pp. 473–382.CrossRefGoogle Scholar
  6. [6]
    Ménétrier D., Jawed I., Skalny J.Hydration of tricalcium silicate— a study by high resolution scanning electron microscopy, Silicates Industr., Vol. 45, No. 12, 1980, pp. 243–248.Google Scholar
  7. [7]
    Double D. D.New developments in understanding the chemistry of cement hydration, Phil. Trans. R. Soc. Lond. A., Vol. 310, No. 1511, 1983, pp. 52–66.CrossRefGoogle Scholar
  8. [8]
    Jennings H. M., Dalgleish B. J., Pratt P. L.Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques, J. Amer. Ceram. Soc., Vol. 64, No. 10, 1981, pp. 567–572.CrossRefGoogle Scholar
  9. [9]
    Stewart H. R., Bailey J. E.Microstructural studies of the hydration products of three tricalcium silicate polymorphs, J. Mat. Sci., Vol. 18, No. 12, 1983, pp. 3686–3694.CrossRefGoogle Scholar
  10. [10]
    Ball M. C.Stress as a factor in the hydration of C 3S, Cem. Concr. Res., Vol. 13, No. 5, 1983, pp. 744–746.CrossRefGoogle Scholar
  11. [11]
    Barret P., Ménétrier D.—Unpublished observation.Google Scholar
  12. [12]
    Slegers P. A., Rouxhet P. G.The hydration of tricalcium silicate: calcium concentration and portlandite formation, Cem. Concr. Res., Vol. 7, No. 1, 1977, pp. 31–38.CrossRefGoogle Scholar
  13. [13]
    Ings J. B., Brown P. W., Frohnsdorff G.Early hydration of large single crystals of tricalcium silicate, Cem. Concr. Res., Vol. 13, No. 6, pp. 843–848.CrossRefGoogle Scholar
  14. [14]
    Forsén L.The chemistry of retarders and accelerators, Proc. [2nd. Int.] Symp. Chem. Cements, Stockholm, 1938, pp. 298–394. Ingeniorsvetenskapsakademien, Stockholm, 1939.Google Scholar
  15. [15]
    Barret P., Bertrandie D., Ménétrier D.Étude comparée de la formation de C-S-H à partir de solutions sursaturées et de mélanges C 3S-solution, Proc. 7th. Int. Congr. Chem. Cement, Paris, 1980, Vol. 2, pp. II-261–II-266. Editions Septima, Paris, 1980.Google Scholar
  16. [16]
    Vernet C., Demoulian E., Gourdin P., Hawthorn F.Mechanismes réactionnels de l'hydratation, ibid., Vol. 2, pp. II.267–II.272.Google Scholar
  17. [17]
    Fierens P., Verhaegen J. P.Hydration of tricalcium silicate in paste—kinetics of calcium ions dissolution in the aqueous phase, Cem. Concr. Res., Vol. 6, No. 3, 1976, pp. 337–342.CrossRefGoogle Scholar
  18. [18]
    Odler I., Stassinopoulos E. N.Über die Zusammensetzung der Porenflüssigkeit hydratisierter Zementpasten, TIZ-Fachber., Vol. 106, No. 6, 1982, pp. 394–401.Google Scholar
  19. [19]
    Suzuki K., Nichikawa T., Kato K., Hayashi H., Ito S.Approach by zeta-potential measurement on the surface change of hydrating C 3S, Cem. Concr. Res., Vol. 11, No. 5/6, 1981, pp. 759–764.CrossRefGoogle Scholar
  20. [20]
    Thomassin J.-H., Regourd M., Baillif P., Touray J.-C.Étude de l'hydratation initiale du silicate tricalcique par spectrométrie da photos-électrons, C. R. Acad. Sc., Paris, Ser. C., Vol. 288, No. 3, 1979, pp. 93–95.Google Scholar
  21. [21]
    Odler I., Dörr H.Early hydration of tricalcium silicate. II. The induction period, Cem. Concr. Res., Vol. 9, No. 3, 1979, pp. 277–284.CrossRefGoogle Scholar
  22. [22]
    Regourd M., Thomassin J.-H., Baillif P., Touray J.-C.Study of the early hydration of Ca 3SiO5 by X-ray photoelectron spectroscopy, Cem. Concr. Res., Vol. 10, No. 2, 1980, pp. 223–230.CrossRefGoogle Scholar
  23. [23]
    Regourd M.—Unpublished observation.Google Scholar
  24. [24]
    Kondo R., Ueda S.Kinetics and mechanisms of the hydration of cement, Proc. 5th. Int. Symp. Chem. Cement, Tokyo, 1968, Vol. 2, pp. 203–248. Cement Assoc, Japan, 1969.Google Scholar
  25. [25]
    Kantro D.Tricalcium silicate hydration in the presence of various salts. J. Test. Eval., Vol. 3, No. 4, 1975, pp. 545–550.Google Scholar
  26. [26]
    Young J. F.A review of the mechanisms of set-retardation in portland cement pastes containing organic admixtures, Cem. Concr. Res., Vol. 2, No. 4, 1972, pp. 415–433.CrossRefGoogle Scholar
  27. [27]
    Thomas N. L., Birchall J. D.The retarding action of sugars on cement hydration, Cem. Concr. Res., Vol. 13, No. 6, 1983, pp. 830–842.CrossRefGoogle Scholar
  28. [28]
    Greening N.— Unpublished observation quoted in Ref. 26..CrossRefGoogle Scholar
  29. [29]
    Brown P. W.—Unpublished observation.Google Scholar
  30. [30]
    Seligman P., Greening N. R.Phase equilibria of cement-water, Proc. 5th. Int. Symp. Chem. Cement, Tokyo, 1968, Vol. 2, pp. 179–200. Cement Assoc. Japan, 1969. See alsoDavis R. W. andYoung J. F.Hydration and strength eevelopment in tricalcium silicate pastes seeded with afwillite, J. Amer. Ceram. Soc., Vol.58, No.1-2, 1975, pp. 67–70.Google Scholar
  31. [31]
    Forrester J.—Private communication.Google Scholar
  32. [32]
    Odler I., Schüppstuhl J.Early hydration of tricalcium silicate. III. Control of the induction period, Cem. Concr. Res., Vol. 11, No. 5/6, 1981, pp. 765–774.CrossRefGoogle Scholar
  33. [33]
    Taylor H. F. W., Newbury D. E.Calcium hydroxide distribution and calcium silicate hydrate composition in tricalcium silicate and β-dicalcium silicate pastes, Cem. Concr. Res., Vol. 14, No. 1, 1984, pp. 93–98.An electron microprobe study of a mature cement paste, Cem. Concr. Res., Vol. 14, No. 4, 1984, pp. 565–573.CrossRefGoogle Scholar
  34. [34]
    Groves G. W.Microcrystalline calcium hydroxide in portland cement pastes of low water/cement ratio. Cem. Concr. Res., Vol. 11, No. 5/6, 1981, pp. 713–718.CrossRefGoogle Scholar
  35. [35]
    Lachowski E. E.—Private communication.Google Scholar
  36. [36]
    Mohan K., Taylor H. F. W.A trimethylsilylation study of tricalcium silicate pastes, Cem. Concr. Res., Vol. 12, No. 1, 1981, pp. 25–31.CrossRefGoogle Scholar
  37. [37]
    Hirljac J., Wu Z.-Q., Young, J. F.Silicate polymerization during the hydration of alite, Cem. Concr. Res., Vol. 13, No. 6, 1983, pp. 877–886.CrossRefGoogle Scholar
  38. [38]
    Lippmaa E., Mägi M., Tarmak M., Wieker W., Grimmer A.-R.A high resolution 29Si NMR of the hydration of tricalcium silicate, Cem. Concr. Res., Vol. 12, No. 5, 1982, pp. 597–602.CrossRefGoogle Scholar
  39. [39]
    Diamond S.Cement paste microstructure—an overview at several levels, in Proc. Conf. Hydraulic Cement Pastes, their Structure and Properties, Sheffield, 1976, pp. 2–30. Cement and Concrete Assoc. Slough, 1976.Google Scholar
  40. [40]
    Williamson R. B.Solidification of portland cement, Progress in Materials Science, Vol. 15, No. 3, 1972, pp. 189–286.CrossRefGoogle Scholar
  41. [41]
    Goto S., Daimon M., Hosaka G. andKondo R.Composition and morphology of hydrated tricalcium silicate, J. Amer. Ceram. Soc., Vol. 59, No. 7/8, 1976, pp. 281–284.CrossRefGoogle Scholar
  42. [42]
    Pratt P. L., Ghose A.Electron microscope studies of Portland cement microstructures during setting and hardening, Phil. Trans. Roy. Soc. Lond. A, Vol. 310, No. 1511, 1983, pp. 93–103.CrossRefGoogle Scholar
  43. [43]
    Barret P., Ménétrier D., Bertrandie D.Mechanism of C 3S dissolution and problem of congruency in the very initial period and later on, Cem. Concr. Res., Vol. 13, No. 5, 1983, pp. 728–738.CrossRefGoogle Scholar
  44. [44]
    Tadros M. E., Skalny J., Kalyoncu R. S.Early hydration of tricalcium silicate, J. Amer. Ceram. Soc., Vol. 59, No. 7/8, 1976, pp. 344–347.CrossRefGoogle Scholar
  45. [45]
    Skalny J., Young J. F.Mechanisms of portland cement hydration, Proc. 7th. Int. Congr. Chem. Cement, Paris, 1980, Vol. 2, pp. II.1/3–II.1/45. Editions Septima, Paris, 1980.Google Scholar
  46. [46]
    Young J. F., Tong H. S., Berger R. L.Compositions of solutions in contact with hydrating tricalcium silicate pastes, J. Amer. Ceram. Soc., Vol. 60, No. 5/6, 1977, pp. 193–198.CrossRefGoogle Scholar
  47. [47]
    Sierra R.Contribution to the kinetic study of hydration of tricalcium silicate, Proc. 6th. Int. Congr. Chem. Cement, Moscow, 1974, Vol. 2, Part 1, pp. 138–143 (Russian with English preprint). Moscow, Stroyizdat, 1976.Google Scholar
  48. [48]
    Frohnsdorff G., Brown P. W.—unpublished observation.Google Scholar
  49. [49]
    Dent Glasser L. S.Osmotic pressure and the swelling of gels, Cem. Concr. Res., Vol. 9, No. 4, pp. 515–517.CrossRefGoogle Scholar
  50. [50]
    Jawed I., Skalny J., Young J. F.Hydration of portland cement, pp. 237–318 in Structure and Performance of Cements, P. Barnes (ed.). Applied Science Publishers, London, 1984.Google Scholar
  51. [51]
    Copeland L. E., Kantro D. L.Hydration of portland cement, Proc. 5th. Int. Symp. Chem. Cement, Tokyo, 1968, Vol. 2, pp. 387–420. Cement Assoc. Japan, 1969.Google Scholar
  52. [52]
    Powers T. C., Brownyard T. L.Studies of the physical properties of hardened portland cement paste, Bull. 22, March 1948, Portland Cement Association, Chicago.Google Scholar
  53. [53]
    Taplin J. H.On the hydration kinetics of hydraulic cements, Proc. 5th. Int. Symp. Chem. Cement, Tokyo, 1968, Vol. 2, pp. 337–348, also pp. 249–250 and p. 421. Cement Assoc. Japan, 1969.Google Scholar
  54. [54]
    Knudsen T.On particle size distribution in cement hydration, Proc. 7th. Int. Congr. Chem. Cement, Paris, 1980, Vol. 2, pp. 1.170-I.175, Editions Septima, Paris, 1980.Google Scholar
  55. [55]
    Knudsen T.Modelling hydration of portland cement, Proc. Conf. Characterization and Performance Prediction of Cements and Concretes, Henniker, NH, July 1982. Engineering Foundation, New York, in press.Google Scholar
  56. [56]
    Jelenić-Bezjak IKinetics of hydration of cement phases, in Advances in Cement Technology,S. N. Ghosh ed., pp. 397–440. Pergamon Press, Oxford, 1983.CrossRefGoogle Scholar

Copyright information

© Gauthier-Villars 1984

Authors and Affiliations

  • H. F. W. Taylor
    • 1
  • P. Barret
    • 2
  • P. W. Brown
    • 3
  • D. D. Double
    • 4
  • G. Frohnsdorff
    • 5
  • V. Johansen
    • 6
  • D. Ménétrier-Sorrentino
    • 7
  • I. Odler
    • 8
  • L. J. Parrott
    • 9
  • J. M. Pommersheim
    • 10
  • M. Regourd
    • 11
  • J. F. Young
    • 12
  1. 1.Department of ChemistryUniversity of AberdeenOld AberdeenScotland, UK
  2. 2.Laboratoire de Recherches sur la Réactivité des SolidesUniversity of DijonFrance
  3. 3.Center for Building TechnologyNational Bureau of StandardsWashington, DCUSA
  4. 4.Department of Metallurgy and Science of MaterialsUniversity of OxfordUK
  5. 5.Center for Building TechnologyNational Bureau of StandardsWashington, DCUSA
  6. 6.F. L. Smidth & Co. A/SCopenhagenDenmark
  7. 7.Laboratoire de Recherches sur la Réactivité des SolidesUniversity of DijonFrance
  8. 8.Dept. of Ceramics and building MaterialsTechnical University ClausthalGermany
  9. 9.Cement and Concrete AssociationSloughUK
  10. 10.Dept. of Chemical EngineeringBucknell UniversityLewisburgUSA
  11. 11.Centre de Recherches Lafarge CoppéeTrappesFrance
  12. 12.Dept. of Civil EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations