Skip to main content
Log in

Radiocarcinogenesis in vitro: «Inverse dose-rate effect»

  • Published:
Il Nuovo Cimento D

Summary

There is substantial experimental evidence that protracted exposure to high-LET radiation can have a greated effect than single exposure in inducing cell transformation, the so-called «inverse dose-rate effect». The magnitude of this enhancement is due to the complex interplay between dose, dose rate and radiation quality. We have developed a model that explains the complex trend of the experimental results. This model is based on the assumption that there is a brief period of high sensitivity to transformation in the cell cycle as proposed in the literature and takes into account the saturation observed at high doses in the dose-effect curves. Specific equations are reported for acute, protracted and fractionated irradiation. Findings with C3H10T1/2 cells were analised in the light of this model. Assuming best fitted parameters of the model obtained from acute-irradiation data, tranformation frequencies due to protracted or fractionated exposure were predicted and compared with experimental findings on fission and monoenergetic neutrons and on charged particles of LET between 20 and 150 keV/μm. The model’s predictions were found to be closely consistent with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bettega, P. Calzolari andL. Tallone Lombardi:Nuovo Cimento D,9, 1205 (1987).

    Google Scholar 

  2. D. J. Brenner:Radon: Risk and Remedy (W. H. Freeman, New. York, N.Y., 1989).

    Google Scholar 

  3. C. K. Hill, F. M. Buonaguro, C. P. Myers, A. A. Han andM. M. Elkind:Nature,298, 67 (1982).

    Article  Google Scholar 

  4. C. K. Hill, A. Han andM. M. Elkind:Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,46, 11 (1984).

    Google Scholar 

  5. C. A. Jones, B. A. Sedita, C. K. Hill andM. M. Elkind: inLow Dose Radiation: Biological Bases of Risk Assessment, edited byK. F. Baverstock andJ. W. Sthater (Taylor and Francis, London, 1989), p. 539.

    Google Scholar 

  6. J. L. Redpath, C. K. Hill, C. A. Jones andC. Sun:Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,58, 673 (1990).

    Google Scholar 

  7. E. K. Balcer-Kubiczek andG. H. Harrison:Int. J. Radiat. Biol. Relat., Stud. Phys., Chem. Med.,44, 377 (1983).

    Google Scholar 

  8. E. K. Balcer-Kubiczek andG. H. Harrison Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,59, 1017 (1991).

    Google Scholar 

  9. A. Saran, S. Pazzaglia, M. Coppola, S. Rebessi, V. Di Majo, M. Garavini andV. Covelli:Radiat. Res.,126, 343 (1991).

    Google Scholar 

  10. M. M. Elkind:Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,59, 1467 (1991).

    Google Scholar 

  11. R. C. Miller, D. J. Brenner, C. R. Geard, K. Komatsu, S. A. Marino andE. J. Hall:Radiat. Res.,114 589 (1988).

    Google Scholar 

  12. R. C. Miller, C. R. Geard, D. J. Komatsu, S. A. Marino andE. J. Hall:Radiat. Res.,117, 114 (1989).

    Google Scholar 

  13. R. C. Miller, D. J. Brenner, G. Randers-Pehrson, S. Marino andE. J. Hall:Radiat. Res.,124, S62 (1990).

    Google Scholar 

  14. R. C. Miller, G. Randers-Pehrson, L. Hieber, S. Marino, A. Kellerer andE. J. Hall: inNew Developments in Fundamental and Applied Radiobiology, edited byC. B. Seymour andC. Mothersill (Taylor and Francis, London, 1991), p. 177.

    Google Scholar 

  15. D. Bettega, P. Calzolari, G. Noris Chiorda andL. Tallone Lombardi:Radiat. Res., in press (1992).

  16. L. Hieber, G. Ponsel, H. Roos, S. Fenn, E. Fromke andA. M. Kellerer:Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,52, 859 (1987).

    Google Scholar 

  17. H. H. Rossi andA. M. Kellerer:Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med.,50, 353 (1986).

    Google Scholar 

  18. D. J. Brenner andE. J. Hall:Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.,58, 745 (1990).

    Google Scholar 

  19. A. Ottolenghi andL. Tallone Lombardi: inBiophysical Modelling of Radiation Effects, edited byK. H. Chadwick, G. Moschini andM. N. Warna (A. Hilger, Bristol, 1992), p. 91.

    Google Scholar 

  20. A. Han andM. M. Elkind:Cancer Res.,39, 123 (1979).

    Google Scholar 

  21. J. L. Bateman, H. A. Johnson, V. Bond andH. H. Rossi:Radiat. Res.,35, 86 (1968).

    Google Scholar 

  22. G. H. Harrison andE. K. Balcer-Kubiczek:Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.,61, 139 (1992).

    Google Scholar 

  23. A. Ottolenghi, C. K. Hill, D. Bettega, P. Calzolari andL. Tallone Lombardi: inRecent Developments in Radiation Biology, edited byC. Seymour andC. Mothersill (Taylor and Francis, London, 1991), p. 208.

    Google Scholar 

  24. D. Srdoc, L. J. Goodman andS. A. Marino: inProceedings of the VII Symposium on Microdosimetry, edited byJ. Booz, H. G. Herbert andH. D. Hartfiel (Harwood Academic Publisher, London, 1981), p. 765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottolenghi, A., Bettega, D., Calzolari, P. et al. Radiocarcinogenesis in vitro: «Inverse dose-rate effect». Il Nuovo Cimento D 14, 1191–1202 (1992). https://doi.org/10.1007/BF02456778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456778

PACS 87.50.Gi

Navigation