Geologische Rundschau

, Volume 85, Issue 4, pp 822–831 | Cite as

Early Cambrian oceanic plagiogranite in the Silvretta Nappe, eastern Alps: geochemical, zircon U-Pb and Rb-Sr data from garnet-hornblende-plagioclase gneisses

  • Bernhard Müller
  • Urs Schaltegger
  • Urs Klötzli
  • Markus Flisch
Original paper


Garnet-hornblende-plagioclase gneisses rich in incompatible elements occur in the crystalline basement of the Austro-Alpine Silvretta nappe and are associated with clinopyroxene norites and harzburgite cumulates. It is proposed here that the gneisses were formerly oceanic plagiogranites. An εNd(530) value of +5.6 for the gneisses as well as initial87Sr/86Sr values of 0.7036–0.7037 for the gabbroic rocks and 0.7026–0.7027 for the ultramafic rocks suggest a mantle source for this rock association. The geochemical characteristics of the garnet-hornblende-plagioclase gneisses indicate that their precursors were derived by fractional crystallization from a basaltic parent magma, by the same process which produced the adjacent clinopyroxene norites and ultramafic cumulates as well. The combined U-Pb upper intercept ages of zircons from two gneiss samples yield an igneous crystallization age of 532 ± 30 Ma, similar to previously dated (mostly calcalkaline) orthogneisses in the same area. High-quality transparent zircons showed the least degree of discordance, but contain extremely low U and Pb levels. The rock suite, including this plagiogranite, was emplaced within oceanic crust which formed in the latest Precambrian-early Palaeozoic off the northern continental margin of Gondwana.

Key words

Austro-Alpine Eastern Alps Oceanic rocks Rb-Sr Zircon U-Pb Magmatism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrecht J, Biino GG, Schaltegger U (1995) Building the European continent: late Proterozoic-early Palaeozoic accretion in the central alps of Switzerland. EUG 8, Terra Nova (abstracts) 7 (1): 460Google Scholar
  2. Arth JG (1979) Some trace elements in trondhjemites: their implications to magma genesis and paleotectonic setting. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, AmsterdamGoogle Scholar
  3. Berlepsch P (1992) Petrographie des Jakobshorns — Wuosthorns (Davos). Thesis, Univ Fribourg, SwitzerlandGoogle Scholar
  4. Coleman RG, Donato M (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, AmsterdamGoogle Scholar
  5. Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80:1099–1108CrossRefGoogle Scholar
  6. Finger F, Quadt A von (1995) U/Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian massif, Austria: further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz Mineral Petrogr Mitt 75:265–270Google Scholar
  7. Flisch M (1987) Teil 1: Geologische, petrographische und isotopengeologische Untersuchungen an Gesteinen des Silvrettakristallins. Teil 2: Die Hebungsgeschichte der oberostalpinen Silvretta-Decke seit der mittleren Kreide. PhD thesis, Univ BernGoogle Scholar
  8. Gebauer D (1989) Isotopic systems: geochronology of eclogites. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 141–159Google Scholar
  9. Gebauer D (1996) A P-T-t path for an (ultra?-) high-pressure ultramafic/mafic rock association and its felsic country rocks based on SHRIMP dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. Geophys Monogr 95:307–329Google Scholar
  10. Gebauer D, Söllner F (1993) U-Pb dating of zircons from eclogites of the austroalpine Oetztal crystalline complex (E-Alps, Austria): conventional and SHRIMP data. Terra Nova Abstr Suppl 4:10Google Scholar
  11. Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494CrossRefGoogle Scholar
  12. Ludwig KR (1980) Calculation of uncertainties of U-Pb isotope data. Earth Planet Sci Lett 46:212–220CrossRefGoogle Scholar
  13. Maggetti M, Flisch M (1993) Evolution of the Silvretta Nappe. In: Raumer JF von, Neubauer F] (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 469–484CrossRefGoogle Scholar
  14. Maggetti M, Galetti G, Stosch HG (1990) Geochemische Argumente zur Genese der “Alteren Orthogneise” der Silvretta. Schweiz Mineral Petrogr Mitt 70:103–107Google Scholar
  15. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643CrossRefGoogle Scholar
  16. Ménot RP, Peucat JJ, Scarenzi D, Piboule M (1988) 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a Lower Paleozoic oceanization. Earth Planet Sci Lett 88:82–92CrossRefGoogle Scholar
  17. Müller B, Klötzli US, Flisch M (1995) U-Pb and Pb-Pb zircon dating of the older orthogneiss suite in the Silvretta nappe, eastern Alps: Cadomian magmatism in the upper Austro-Alpine realm. Geol Rundsch 84:457–465CrossRefGoogle Scholar
  18. Oberli F, Meier M, Biino GG (1994) Time constraints on the preVariscan magmatic/metamorphic evolution of the Gotthard and Tavetsch units derived from single-zircon U-Pb results. Schweiz Mineral Petrogr Mitt 74:483–488Google Scholar
  19. Ochsner A (1993) U-Pb geochronology of the Upper Proterozoic-Lower Paleozoic geodynamic evolution in the Ossa-Morena zone (SW Iberia): constraints on the timing of the Cadomian Orogeny. PhD thesis ETH, ZurichGoogle Scholar
  20. Ohnenstetter M, Ohnenstetter D, Vidal P, Cornichet J, Hermitte D, Mace J (1981) Crystallization and age of zircon from Corsican ophiolitic albitites: consequences for oceanic expansion in Jurassic times. Earth Planet Sci Lett 54:397–408CrossRefGoogle Scholar
  21. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249Google Scholar
  22. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25 (4): 956–983CrossRefGoogle Scholar
  23. Pin C, Marini F (1993) Early Ordovician continental breakup in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196CrossRefGoogle Scholar
  24. Pitcher WS (1993) The Nature and origin of granite. Blackie, LondonCrossRefGoogle Scholar
  25. Pupin JP (1988) Granites as indicators in paleogeodynamics. Rend Soc Ital Min Petr 43:237–262Google Scholar
  26. Pupin JP (1992) Les zircons des granites océaniques et continentaux: couplage typologie-géochimie des éléments en traces. Bull Soc Géol France 163:495–507Google Scholar
  27. Pupin JP, Turco G (1972) Une typologie originale du zircon accessoire. Bull Soc Franc Mineral Cristallogr 95:348–359Google Scholar
  28. Quadt A von (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Mineral Petrol 110:57–67CrossRefGoogle Scholar
  29. Raumer JF von, Neubauer F (1993) Late Precambrian and Palaeozoic evolution of the Alpine Basement: an overview. In: Raumer JF von, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 625–639CrossRefGoogle Scholar
  30. Roddick JC (1987) Generalized numerical error analysis with applications to geochronology and thermodynamic. Geochim Cosmochim Acta 51:2129–2135CrossRefGoogle Scholar
  31. Size WB (1985) Origin of trondhjemite in relation to Appalachian-Caledonide palaeotectonic settings. In: Gee DG, Sturt BA (eds) The Caledonide orogen: Scandinavia and related areas. Wiley, New YorkGoogle Scholar
  32. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  33. Stoessel GFU, Ziegler URF (1989) Age determinations in the Rehoboth Basement Inlier, SWA/Namibia. PhD thesis, Univ BernGoogle Scholar
  34. Thierrin J (1983) Les éclogites et le complexe gabbroïque du Val Sarsura (Silvretta). Schweiz Mineral Petrogr Mitt 63:479–496Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bernhard Müller
    • 1
  • Urs Schaltegger
    • 1
  • Urs Klötzli
    • 2
  • Markus Flisch
    • 3
  1. 1.Department of Earth SciencesInstitute of Isotope Geology and Mineral ResourcesZurichSwitzerland
  2. 2.Department of Geology, Laboratory for Geochronology and Isotope GeologyUniversity of ViennaViennaAustria
  3. 3.BernSwitzerland

Personalised recommendations