Geologische Rundschau

, Volume 85, Issue 4, pp 800–821 | Cite as

Litholog and structure of the Grenville-aged (≈1.1 Ga) basement of heimefrontfjella (East Antarctica)

  • J. Jacobs
  • W. Bauer
  • G. Spaeth
  • R. J. Thomas
  • K. Weber
Original Paper


The Heimefrontfjella mountains, Western Dronning Maud Land (East Antarctica), are dominantly composed of Grenville-aged (≈ 1.1 Ga) rocks, which were reworked during the Pan -African orogeny at ≈500 Ma. Three discontinuity-bounded Grenville-aged terranes have been recognized namely (from north to south) the Kottas, Sivorg and Vardeklettane terranes. The terranes contain their own characteristic lithological assemblages, although each is made up of an early supracrustal sequence of metavolcanic and/or metasedimentary gneisses, intruded by various (predominantly granitoid) suites. No older basement upon which the protoliths of these older gneisses were deposited has been recognized. In each terrane the older layered gneisses were intruded by various plutonic suites ranging in age from ≈ 1150 to ≈1000 Ma. The Vardeklettane terrane is characterized by abundant charnockites and two-pyroxene granulite facies parageneses in metabasites, whereas the Sivorg and Kottas terranes were metamorphosed to amphibolite facies grade. P-T estimates show that peak metamorphic conditions changed from ≈600°C at 8 kbar in the south, to ≈700 °C at 4 kbar in the northern Sivorg terrane. Regional greenschist retrogression of high-grade assemblages may be of Pan-African age. The Heimefrontfjella terranes were juxtaposed and pervasively deformed during a complex and protracted period of E-W collision orogenesis in a transpressive regime at ≈ 1.1 Ga. This is manifest as early, gently dipping thrust-related shear fabrics (D1), succeeded by the initiation of an important (D2) steep dextral shear zone (Heimefront shear zone, HSZ), during which the early fabrics and structures were steepened and rotated in an anticlockwise sense. The HSZ is a curvilinear structure which changes from a dextral oblique strike-slip lateral ramp in the north to a steep dip-slip frontal ramp in the south, where it forms the boundary between the Sivorg and Vardeklettane terranes. The Pan-African event is manifested as discrete, low- to medium-temperature ductile to brittle shears (D3) and numerous K/Ar cooling ages.


East Antarctica Greenville Pan-African Rodinia Heimefrontfjella 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt N, Drücker C, Fielitz W, Hungeling E, Lippmann H, Miller H, Patzelt G, Sälzle A, Spaeth G, Tapfer M, Walter C, Weber K (1987) Die 2. Neuschwabenland-Expedition in die Kottas-Berge. Ber Polarf 3:134–158Google Scholar
  2. Arndt NT, Todt W, Chauvel C, Tapfer M, Weber K (1991) U-Pb zircon age and Nd isotopic composition of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geol Rundsch 80:759–777CrossRefGoogle Scholar
  3. Bauer W (1995) Strukturentwicklung und Petrogenese des metamorphen Grundgebirges der nördlichen Heimefrontfjella (westliches Dronning Maud Land/Antarktika). Ber Polarf 171:1–222Google Scholar
  4. Bauer W, Jacobs J, Patzelt G, Siegesmund S, Spaeth G, Thomas RJ, Weber K, Wohltmann H (1996) Geologische Expedition in die Heim efrontfjella. Ber Polarf 188:78–88Google Scholar
  5. Bücksteeg A, Bauer W, Spaeth G (1995) Typologic studies of zircon populations from gneisses of the northern Heimefrontfjella (Antarctica). N Jahrb Geol Paläontol Abh 197:253–27Google Scholar
  6. Daziel IWD (1991) Pazific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601CrossRefGoogle Scholar
  7. Fielitz W, Spaeth G (1991) A structural survey of Precambrian rocks, Heimefrontfjella, western Neuschwabenland, with special reference to the basic dykes. In: Thomson MRA, Crane JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 67–72Google Scholar
  8. Grantham GH, Groenewald PB, Hunter DR (1988) Geology of the northern H.U. Sverdrupfjella, western Dronning Maud Land and implications for Gondwana reconstructions. S Afr J Antarct Res 18:2–10Google Scholar
  9. Grantham GH, Storey BC, Thomas RJ, Jacobs J (1995) The prebreak-upposition of Haag Nunataks within Gondwana: possible correlatives in Dronning Maud Land and Natal. VII Int Symp Antarctic Earth Sciences (abstract), Siena, Italy, p. 169Google Scholar
  10. Groenewald PB, Grantham GH, Watkeys MK (1991) Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud Land, Antarctica. J Geol Soc Lond 148:1115–1123CrossRefGoogle Scholar
  11. Halpern M (1970) Rubidium-Strontium date of possibly three billion years for a granite rock from Antarctica. Science 169:977–978CrossRefGoogle Scholar
  12. Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412CrossRefGoogle Scholar
  13. Hoppe G (196) Die Verwendbarkeit morphologischer Erscheinungen an akzessorischen Zirkonen für petrogenetische Auswertungen. Abh Dt Akad Wiss Berlin 1:1–131Google Scholar
  14. Hotten R (1993) Die mafischen Gänge der Shackelton Range/ Antarktika: Petrographie, Geochemie, Isotopengeochemie und Paläomagnetik. Ber Polarf 118:1–225Google Scholar
  15. Jackson C, Jacobs J (1995) Reconciliation of the kinematics and timing of deformation in contrasting structural domains within the 1.1 Ga terrains of western Dronning Maud Land. VII Int Symp Antarctic Earth Sciences (abstract), Siena, Italy, p. 208Google Scholar
  16. Jackson C, Corner B, Ferrar G, Grantham GH, Groenewald GB, Harris PD, Krynauw JR (1993) Structural evolution of the Kirwanveggen and HU Sverdrupfjella, western Dronning Maud Land. Int Symp on the Tectonics of East Antarctica (abstract), UtrechtGoogle Scholar
  17. Jacobs J (1991) Strukturelle Entwicklung und Abkühlungsgeschichte der Heimefrontfjella (Westliches Dronning Maud Land/Antarktika). Ber Polarf 97: 1–141Google Scholar
  18. Jacobs J, Thomas RJ (1994) Oblique collision at about 1.1 Ga along the southern margin of the Kaapvaal continent, southeast Africa. Geol Rundsch 83:322–333Google Scholar
  19. Jacobs J, Weber K (1993) Geologische Karte (Luftbildkarte) 1: 25000 Scharffenbergbotnen 1118 W 74 7. Ed. IfAG, Frankfurt/MGoogle Scholar
  20. Jacobs J, Ahrendt H, Kreutzer H, Weber K (1995) K-Ar,40Ar-39Ar and apatite fission track evidence for Neoproterozoic and Mesozoic basement rejuvenation events in the Heimefrontfjella and Mannfallknausane (East Antarctica). Precamb Res 75:251–262Google Scholar
  21. Jacobs J, Kaul N, Weber K (1996) The history of denudation and resedimentation at the continental margin of western Dronning Maud Land, Antarctica, during break-up of Gondwana. Geol Soc Lond Spec Publ 108:191–199CrossRefGoogle Scholar
  22. Jacobs J, Kreutzer S, Schnellbach U, Schulze P, Spaeth G, Zarske G (1991) Geologische Kartierung in der Heimefrontfjella. Ber Polarf 89:93–102Google Scholar
  23. Jacobs J, Thomas RJ, Weber K (1993) Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 21:203–206CrossRefGoogle Scholar
  24. Juckes LM (1972) The geology of north-eastern Heim efrontfjella, Dronning Maud Land. Br Ant Surv Sci Rep 65:1–44Google Scholar
  25. Marshall J (1994) The Falkland Islands: a key element in Gondwana palaeogeography. Tectonics 13:499–514CrossRefGoogle Scholar
  26. Martin AK, Hartnady CJH (1986) Plate tectonic development of the south west Indian Ocean: a revised reconstruction of East Antarctica and Africa. J Geophys Res 91(135):4767–4778CrossRefGoogle Scholar
  27. Maslanyj MP, Storey BC (1990) Regional aeromagnetic anomalies in Ellesworth Land: crustal structure and Mesozoic microplate boundaries within West Antarctica. Tectonics 9:1515–1532CrossRefGoogle Scholar
  28. Moores EM (1991) Southwest U.S. — East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425–428CrossRefGoogle Scholar
  29. Moyes AB, Barton JM (1990) A review of isotopic data from western Dronning Maud Land, Antarctica. Zbl Geol Paläon-tol Teil I, 1 (2):19–31Google Scholar
  30. Moyes AB, Barton JM, Groenewald PB (1993) Late Proterozoic to Early Palaeozoic tectonism in Dronning Maud Land, Antarctica: supercontinental fragmentation and amalgamation. J Geol Soc 150:833–842CrossRefGoogle Scholar
  31. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 7:207–220CrossRefGoogle Scholar
  32. Schulze P (1992) Petrogenese des metamorphen Grundgebirges der zentralen Heimefrontfjella (westliches Dronning Maud Land/Antarktis). Ber Polarf 117:1–321Google Scholar
  33. Spaeth G, Fielitz W (1987) Structural investigations in the Precambrian of western Neuschwabenland, Antarctica. Polarforsch 57:71–92Google Scholar
  34. Storey BC, Pankhurst RJ, Johnson AC (1994) The Grenville Province within Antarctica: a test for the SWEAT hypothesis. J Geol Soc Lond 151:1–4CrossRefGoogle Scholar
  35. Thomas RJ (1989) A tale of two tectonic terranes. S Afr J Geol 92:306–321Google Scholar
  36. Thomas RJ, Eglington BM (1990) A Rb-Sr, Sm-Nd and U-Pb zircon isotopic study of the Mzumbe suite, the oldest intrusive granitoid in southern Natal, South Africa. South Afr J Geol 93:761–765Google Scholar
  37. Thomas RJ, Du Plessis A, Fitch F, Marshall CGA, Miller JA, Brunn V von, Watkeys MK (1992) Geological studies in southern Natal and Transkei: implications for the Cape Drogen. In: De Wit MJ, Ransome IGD (eds) Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous basins of southern Africa. Balkema, Rotterdam, pp 229–236Google Scholar
  38. Thomas RJ, Jacobs J, Weber K (1995) Geology of the Mesoproterozoic Cape Meredith Complex, West Falkland. VII Int Symp on Antarctic Earth Sciences (abstract), Siena, Italy, p.Google Scholar
  39. Weber K, Arndt N, Jacobs J, Peters M (1990) The Proterozoic evolution of New Schwabenland and its correlation with the southern part of Africa. Geodät Geophys Veröff Reihe 1 (15): 62–63Google Scholar
  40. Wemmer K (1991) K/Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich — Beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N-Italien). Göttinger Arb Geol Paläontol 51: 1–61Google Scholar
  41. Winkler HGF (1974) Petrogenesis of metamorphic rocks. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  42. Wolmarans LG, Kent LE (1982) Geological investigations in western Dronning Maud Land, Antarctica: a synthesis. South Afr J Antarct Res (Suppl) 2:1–93Google Scholar
  43. Worsfold RJ (1967) The geology of southern Heimefrontfjella, Dronning Maud Land. Ph.D. thesis, University of Birmingham, 176 ppGoogle Scholar
  44. Yardley BWD (1989) An introduction to metamorphic petrology. Longmann, HarlowGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Jacobs
    • 1
  • W. Bauer
    • 2
  • G. Spaeth
    • 2
  • R. J. Thomas
    • 3
  • K. Weber
    • 4
  1. 1.Universität BremenBremenGermany
  2. 2.Endogene Dynamik der RWTH AachenLehr- und Forschungsgebiet GeologieAachenGermany
  3. 3.Council for GeosciencePietermaritzburgRSA
  4. 4.Institut für Geologie und Dynamik der LithosphäreGöttingenGermany

Personalised recommendations