Geologische Rundschau

, 85:669 | Cite as

Cyclicity in the Middle Eocene Yamak turbidite complex of the Haymana basin, Central Anatolia, Turkey

  • Attila Çiner
  • Max DeynouxEmail author
  • Erdal Kosun
Original Paper


The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.

Key words

Turbidites Submarine fan Sequence stratigraphy Fore-arc basin Eocene Turkey 


  1. Allen PA, Allen JR (1990) Basin analysis: principles and applications. Blackwell, Oxford, pp 1–451Google Scholar
  2. Bally AW (1980) Basins and subsidence: a summary. In: Dynamics of plate interiors. Am Geophys Union Geodyn Series 1:5–20Google Scholar
  3. Bally AW (1982) Musing over sedimentary basin evolution. Phil Trans R Soc Lond (A) 305:325–338CrossRefGoogle Scholar
  4. Berggren WA, Kent D, Flynn JJ, Couvering JV (1985) Cenozoic geochronology. Geol Soc Am Bull 96:1407–1418CrossRefGoogle Scholar
  5. Busch RM (1971) Genetic units in delta prospecting. Am Assoc Pet Geol Bull 55:1137–1154Google Scholar
  6. Busch RM, Rollins HB (1984) Correlation of carboniferous strata using a hierarchy of transgressive-regressive units. Geology 12:471–474CrossRefGoogle Scholar
  7. Cavalier C, Pomerol C (1986) Stratigraphy of Paleogene. Bull. Soc. Géol. France, (8), 2, 255–265CrossRefGoogle Scholar
  8. Çiner A (1992) Sédimentologie et stratigraphie séquentielle du bassin d'Haymana à l'Eocène moyen, Turquie. Thèse Univ Louis Pasteur, Strasbourg, pp 1–190Google Scholar
  9. Cloetingh S (1986) Intraplate stresses: a new mechanism for fluctuations of sea-level. Geology 14:617–620CrossRefGoogle Scholar
  10. Cross TA (1988) Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, western Interior, USA. Soc Econ Paleontol Miner Spec Publ 42:371–380Google Scholar
  11. Dickinson SR (1978) Plate tectonic evolution of north Pacific rim. J. Phys Earth 26 (Suppl): S1-S19CrossRefGoogle Scholar
  12. Dizer A (1964) Sur quelques Alvéolines de l'Eocène de Turquie. Rev Micropal 7:265–279Google Scholar
  13. Dizer A (1968) Etude micropalèontologique du Nummulitique de Haymana (Turquie). Rev Micropal 1:13–21Google Scholar
  14. Fourquin C (1975) L'Anatolie du Nord Ouest, marge méridionale du continent Européen, histoire paléogéographique, tectonique et magmatique durant la Secondaire et Tertiaire. Bull Soc Géol France 2 (7): 1058–1070CrossRefGoogle Scholar
  15. Frazier DE (1974) Depositional episodes: their relationships to the Quaternary stratigraphic framework of the northwestern portion of the Gulf basin. University of Texas at Austin, Bureau of Economic Geology, Geological circular 74-1, pp 1–28Google Scholar
  16. Galloway WE (1989) Genetic stratigraphic sequences in basin analysis: architecture and genesis of flooding-surfaces bounded depositional units. Am Assoc Pet Geol Bull 73:125–142Google Scholar
  17. Gökçen SL (1981) Eocene submarine fan deposits of the Haymana region. Doga Ankara 3:61–70 (in Turkish)Google Scholar
  18. Gökçen SL, Kelling G (1983) The Paleogene Yamak sand-rich submarine-fan complex, Haymana basin, Turkey. Sediment Geol 34:219–243CrossRefGoogle Scholar
  19. Goodwin PW, Anderson EJ (1985) Punctuated aggradational cycles: a general hypothesis of episodic stratigraphic accumulation. J Geol 93:515–533CrossRefGoogle Scholar
  20. Görür N (1981) Geology of Central Anatolia: recent deposits and their hydrocarbon potential. Turkish Geol Soc Bull 30:60–65 (in Turkish)Google Scholar
  21. Görür N, Oktay FY, Seymen I, Sengör AMC (1984) Paleotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean. Geol Soc Lond: 467–482Google Scholar
  22. Görür N, Sengör AMC, Oktay FY (1989) Sedimentological evolution of Central Anatolian basins and the assembly of the alpine tectonic collage in Turkey. In: Tethyan tectonostratigraphic terrane-models tested. EUG V, Terra Abstracts, p. 55Google Scholar
  23. Haq B, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea-level since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  24. Koçyigit A (1991) An example of an accretionary fore-arc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geol Soc Am Bull 103:22–36CrossRefGoogle Scholar
  25. Koçyigit A, Lunel T (1987) Geology and tectonic setting of Alci region, Ankara. J Pure Appl Sci Ankara 20:35–57Google Scholar
  26. Koçyigit A, Özkan S, Rojay FB (1988) Examples from the forearc basin remnants at the active margin of northern Neo-Tethys; development and emplacement ages of the Anatolian nappe, Turkey. J Pure Appl Sci Ankara 21:183–210Google Scholar
  27. Kolla V, Macurda DB Jr (1988) Sea-level changes and timing of turbidity-current events in deep-sea fan systems. Soc Econ Paleontol Miner Spec Publ 42:381–392Google Scholar
  28. Lowe DR (1982) Sedimentary gravity flows II. Depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Petrol 52:279–297Google Scholar
  29. Mitchum RM, Van Wagoner JC (1991) High-frequency sequences and their stacking patterns: sequence-stratigraphic evidences of high frequency eustatic cycles. Sediment Geol 70:131–160CrossRefGoogle Scholar
  30. Mitchum RM, Vail PR, Thompson S (1977) The depositional sequence as a basic unit for stratigraphic analysis. Am Assoc Petrol Geol Mem 26:53–62Google Scholar
  31. Mutti E (1979) Turbidites et les cones sous-marins profonds. In: Homewood P (ed) Sédimentation détritique (fluviatile, littorale et marine). Inst Géol Univ Fribourg, pp 353–419Google Scholar
  32. Mutti E (1985) Turbidite systems and their relations to depositional sequences. In: Zuffa GG (ed) Provenance of Arenites. NATO-ASI Series, Reidel, Dordrecht, pp 65–93CrossRefGoogle Scholar
  33. Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Legget JK, Zuffa GG (eds) Deep water elastic deposits: models and case stories. Graham and Thotman, London, pp 1–38Google Scholar
  34. Mutti E, Ricci-Lucchi F (1972) Le torbiditi dell'Apennino settentrionale: introduzione all'analisi di facies. Mem Soc Geol Ital 11:99–161 (translated by Nilsen TH 1978) Intern Geol Rev 20:66–125Google Scholar
  35. Posamentier HW, Erksine RD, Mitchum RM Jr (1991) Models for submarine-fan deposition within a sequence-stratigraphic framework. In: Weimer P, Link MM (eds) Seismic facies and sedimentary processes. Springer, Berlin Heidelberg New York, pp 137–148Google Scholar
  36. Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  37. Ünalan G, Yüksel V, Tekeli T, Gonenç O, Seyirt Z, Hüseyin S (1976) Upper Cretaceous-Lower Tertiary stratigraphy and paleogeographic evolution of Haymana-Polatli region (SW Ankara). Turkish Geol Soc Bull 19:159–176 (in Turkish)Google Scholar
  38. Vail PR, Mitchum RM Jr, Todd RG, Widmier JM, Thompson S III, Sangree JB, Bubb JN, Hatlelid WG (1977) Seismic stratigraphy and global changes of sea level. Am Assoc Petrol Geol Mem 26:49–212Google Scholar
  39. Vail PR, Hardenbol J (1979) Sea-level changes during the Tertiary. Oceanus 22:71–79Google Scholar
  40. Vail PR, Hardenbol J, Todd RG (1984) Jurassic unconformities, chronostratigraphy and sea-level changes from seismic and biostratigraphy. Am Assoc Petrol Geol Mem 36:129–144Google Scholar
  41. Vail PR, Colin JP, Chene R, Kuchly J, Mediavilla F, Trifilirff V (1987) La stratigraphie séquentielle et son application aux corrélations chronostratigraphiques dans le Jurassique du bassin de Paris. Bull Soc Géol France 7 (8): 1301–1321Google Scholar
  42. Van Wagoner JC, Posamentier HW, Mitchum RM, Vail PR, Sarg JF, Loutit T, Hardenbol J (1988) An overview of sequence stratigraphy and key definitions. Soc Econ Paleontol Miner Spec Publ 42:pp 39–45Google Scholar
  43. Watts AB, Karner GD, Steckler MS (1982) Lithospheric flexure and the evolution of sedimentary basins. Phil Trans R Soc Lond (A) 305:249–281CrossRefGoogle Scholar
  44. Yüksel S (1970) Etude géologique de la région d'Haymana (Turquie Centrale). Thèse Univ Nancy, pp 1–179Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Geological Engineering DepartmentHacettepe UniversityAnkaraTurkey
  2. 2.Centre CNRS de Géochimie de la SurfaceInstitut de GéologieStrasbourg, CedexFrance
  3. 3.General Directorate of Mineral Research and Exploration (MTA)AnkaraTurkey

Personalised recommendations