Advertisement

Pharmaceutisch Weekblad

, Volume 5, Issue 5, pp 222–227 | Cite as

Transport in QSAR VIII

The influence of viscosity on transport rate constants in two-phase systems organic solvent-water
  • F. H. N. de Haan
  • A. C. A. Jansen
Original Articles
  • 14 Downloads

Abstract

In the system cyclohexane-water transport rate constants and partition coefficients of nine sulfonamides are determined at six temperatures. Kinematic viscosities of the organic and aqueous layer are determined at the same temperatures. Experimentally bilinear relationships between transport rate constants and partition coefficients are obtained in good agreement with theory. According to this theory convection and diffusion are important features in the overall transport process. Using the experimental data, the influence of viscosity on transport rate constants is established and expressed in terms of the relationships between maximum transport rate constants and viscosities. These relationships correspond with laminar flow at both sides of the interface.

Keywords

Public Health Sulfonamide Experimental Data Internal Medicine Partition Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery, W.J., J.F. Burke, E.B. Leffler andJ. Hadgraft (1976)J. Chem. Soc., Faraday Trans. I 72, 1618–1626.CrossRefGoogle Scholar
  2. Albery, W.J., andJ. Hadgraft (1979)J. Pharm. Pharmacol. 31, 65–68.PubMedGoogle Scholar
  3. Byron, P.R., R.T. Guest andR.E. Notari (1981)J. Pharm. Sci. 70, 1265–1269.PubMedGoogle Scholar
  4. De Haan, F.H.N., T. De Vringer, H. Van De Waterbeemd andA.C.A. Jansen (1983)Int. J. Pharm. 13, 75–87.Google Scholar
  5. Faber, J.S. (1977)Pharm. Weekbl. 112, 702–710.Google Scholar
  6. Gregory, D.P., andA.C. Riddiford (1956)J. Chem. Soc., 3756–3764.Google Scholar
  7. Grijseels, H., D.J.A. Crommelin andC.J. De Blaey (1981)Pharm. Weekbl. [Sci.] 3, 129–144.Google Scholar
  8. Guy, R.H., T.R. Aquino III andD.H. Honda (1982)J. Phys. Chem. 86, 280–283.Google Scholar
  9. Hansch, C., andA. Leo (1979)Substituent constants for correlation analysis in chemistry and biology. John Wiley & Sons, Ltd., New York.Google Scholar
  10. Kubinyi, H. (1977)J. Pharm. Sci. 67, 262–263;Ibidem (1979) In:Progress in Drug Research (Jucker, E., Ed.). Birkhäuser Verlag, Stuttgart, 97–198.Google Scholar
  11. Leo, A., C. Hansch andD. Elkins (1971)Chem. Rev. 71, 525–554.CrossRefGoogle Scholar
  12. Levich, V.G. (1962)Physicochemical Hydrodynamics. Prentice Hall, New Jersey, 1–184.Google Scholar
  13. Lien, E.J. (1975) In:Drug Design, Vol. 5 (Ariëns, E.J., Ed.). Academic Press, New York, 81–132.Google Scholar
  14. Mayer, J.M., H. Van De Waterbeemd andB. Testa (1982)Eur. J. Med. Chem. 17, 17–25.Google Scholar
  15. Perry, R.H., andC.H. Chilton (Eds.) (1973)Chemical Engineers Handbook. McGraw-Hill Book Company, New York.Google Scholar
  16. Rekker, R.F. (1977)The hydrophobic fragmental constant. Eisevier, Amsterdam.Google Scholar
  17. Scholtens, B.J.R. (1977) Ph.D. thesis, Wageningen.Google Scholar
  18. Van De Waterbeemd, H., A.C.A. Jansen andK.W. Gerritsma (1980)Pharm. Weekbl. [Sci.] 2, 73–80.Google Scholar
  19. Van De Waterbeemd, H., C.C.A.A. Van Boekel, R.L.F.M. De Sévaux, A.C.A. Jansen andK.W. Gerritsma (1981a)Pharm. Weekbl. [Sci.] 3, 12–25.Google Scholar
  20. Van De Waterbeemd, H., P. Van Bakel andA. Jansen (1981b)J. Pharm. Sci. 70, 1081–1082.PubMedGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1983

Authors and Affiliations

  • F. H. N. de Haan
    • 1
  • A. C. A. Jansen
    • 1
  1. 1.Department of Pharmacochemistry, Subfaculty of PharmacyUniversity of LeidenRA LeidenThe Netherlands

Personalised recommendations