Advertisement

Insectes Sociaux

, Volume 32, Issue 3, pp 297–304 | Cite as

Electrophoretic evidence for population differentiation in a social spiderAchaearanea wau (Theridiidae)

  • Y. D. Lubin
  • R. H. Crozier
Article

Summary

Twenty one enzyme systems examined in samples from eight populations of the social theridiid spider,Achaearanea wau, showed no variation and one enzyme system, alpha-glycerophosphate dehydrogenase, was polymorphic. The geographic distribution of alpha-GPDH enzyme phenotypes in eight populations supports a model of partial extinction of local populations and establishment of new populations from surviving colonies by fission or by swarming.

Keywords

Geographic Distribution Local Population Population Differentiation Enzyme System Partial Extinction 

Electrophoretischer Nachweis der Populations-Differenzierung bei der sozialen Spinne,Achaearanea wau (Theridiidae)

Zusammenfassung

Einundzwanzig Enzymsysteme, die an acht Populationen der sozialen SpinneAchaearanea wau (Theridiidae) untersucht wurden, wiesen keine Unterschiede auf. Nur ein Enzym-System, α-Glycerophosphatdehydrogenase, war polymorph. Die geographische Verteilung der α-GPDH-Phänotypen in den 8 Populationen unterstützt eine Modellvorstellung, nach der lokale Populationen zum Teil erlöschen und aus überlebenden Kolonien durch Aufspaltung oder Abwanderung neue Populationen entstehen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviles L. In press. — Sex ratio in the social spiderAnelosimus eximius. Proc. Ninth Intl. Congr. Arachnol., Smithsonian Inst. Press.Google Scholar
  2. Ayala F., Powell J., Tracy J.R., Mourao C.A., Peres-Salas S., 1972. — Enzyme variability in theDrosophila willistoni group. IV. Genic variation in natural populations ofDrosophila willistoni.Genetics, 70, 113–139.PubMedPubMedCentralGoogle Scholar
  3. Burgmann M.A., Crozier R.H., Taylor R.W., 1980. — Comparisons of different methods of determining affinities for nine ant species of the genusCamponotus.Aust. J. Zool., 28, 151–160.CrossRefGoogle Scholar
  4. Cesaroni D., Allegrucci G., Caccone M., Cobolli Sbordoni M., De Matthaeis E., Di Rao M., Sbordoni B., 1981. — Genetic variability and divergence between populations and species ofNesticus cave spiders.Genetica, 56, 81–92.CrossRefGoogle Scholar
  5. Christenson T.E. 1984. — Behavior of colonial and solitary spiders of the theridiid speciesAnelosimus eximius.Anim. Behav., 32, 725–734.CrossRefGoogle Scholar
  6. Crozier R.H., Pamilo P., Crozier Y.C., 1984. — Reladness and microgeographic genetic variation inRhytidoponera mayri, an Australian arid-zone ant.Behav. Ecol. Sociobol., 15, 143–150.CrossRefGoogle Scholar
  7. Darchen R.-J., 1978. — Les essaimages de l'araignée sociale,Agelena consociata Denis (Aranéide, Labidognathes), dans la forêt gabonaise (III).C. R. Acad. Sci. Paris, Sér. D, 287, 1035–1037.Google Scholar
  8. Darchen R., 1979. — Relations entre colonies d'Agélénides sociaux du Gabon. Précisions sur les essaimages. II.Bull. biol. Fr. B. CXIII (1), 3–29.Google Scholar
  9. Darchen R., 1980. — Les populations d'Agelena consociata Denis, araignée sociale dans la forêt primaire gabonaise. Leur répartition et leur densite.Ann. Sci. nat., Zool., Paris, 14eSer., Vol.4, 19–26.Google Scholar
  10. Harris H., Hopkinson D.A., 1976. —Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland, Amsterdam.Google Scholar
  11. Levi H.W., Lubin Y.D., Robinson M.H., 1982. — Two new species ofAchaearanea from Papua New Guinea with notes on other theridiid spiders.Pacific Insects, 24, 105–113.Google Scholar
  12. Lubin Y.D., Robinson M.H., 1982. — Dispersal by swarming in a social spider.Science, 216, 319–321.CrossRefGoogle Scholar
  13. Manchenko G.P., 1981. — Allozymic variation inAraneus ventricosus (Arachnida, Aranei).Isozyme Bull., 14, 78.Google Scholar
  14. Pamilo P., Crozier R.H., 1982. — Measuring genetic relatedness in natural populations methodology.Theoret. Popul. Biol., 21, 171–193.CrossRefGoogle Scholar
  15. Pennington B.J., 1979. — Enzyme genetics in taxonomy: diagnostic enzyme loci in the spider genusMeta.Bull. Br. Arachnol. Soc., 4, 377–392.Google Scholar
  16. Sokal R.R., Oden N.L., 1978. — Spatial autocorrelation in biology. I. Methodology.Biol. J. Linn. Soc., 10, 199–228.CrossRefGoogle Scholar
  17. Vollrath F., 1982. — Colony foundation in a social spider.Z. Tierpsychol., 60, 313–324.CrossRefGoogle Scholar
  18. Vollrath F., Rohde-Arndt D., 1983. —Prey capture and feeding in the social spiderAnelosimus eximius.Z. Tierpsychol., 61, 334–340.CrossRefGoogle Scholar
  19. Wilson D.S., 1979. — Structured genes and trait-group variation.Am. Nat., 113, 606–610.CrossRefGoogle Scholar

Copyright information

© Masson 1985

Authors and Affiliations

  • Y. D. Lubin
    • 1
    • 2
  • R. H. Crozier
    • 3
  1. 1.Wau Ecology InstituteWauPapua New Guinea
  2. 2.Smithsonian Tropical Research InstituteBalboaPanama
  3. 3.School of ZoologyUniv. of New South WalesKensingtonAustralia

Personalised recommendations