Advertisement

Pharmaceutisch Weekblad

, Volume 10, Issue 6, pp 259–266 | Cite as

A study of the metal complexation behaviour of some penicillins, cephalosporins and their derivatives

  • P. C. van Krimpen
  • W. P. van Bennekom
  • A. Bult
Original Articles

Abstract

The metal complexation behaviour of several β-lactam antibiotics and derivatives is explained, based on the results of potentiometric titrations. The (organo)metal ions used were (organic derivatives of) transition elements and elements with a filledd-subshell. The emphatic class b (organo)metal ions Ag(I), Hg(II) and C6H5Hg(I) form the most stable complexes with the studied ligands: Hg(II) is the most suited ion. The alkaline degradation products and hydroxamic acid derivatives of penicillins and cephalosporins are very similar to penicillamine in their complexation behaviour. This emphasizes the dominant role of the thiol group as site of complexation. A scheme for stepwise complex formation with Hg(II) and Ag(I) is presented. The availability of the thiol group is used to explain small differences in complexation behaviour between penicillin derivatives on the one hand, and cephalosporin derivatives and penicillamine on the other.

Keywords

Cephalosporins Complexation Hydroxamic acids Metals Penicillamine Penicillins Potentiometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Krimpen PC, Van Bennekom WP, Bull A. Penicillins and cephalosporins. Physicochemical properties and analysis in pharmaceutical and biological matrices. Pharm Weekbl [Sci] 1987;9:1–23.Google Scholar
  2. 2.
    Bird AE, Redrup CE. Mercurimetric assay of penicillins. Proc Anal Div Chem Soc 1977;14:285–8.Google Scholar
  3. 3.
    Pospisilova B, Simková M, Kubes J. Bedingungen für die merkurimetrische Gehaltsbestimmung von Penicillinen. Pharmazie 1986;41:705–8.PubMedGoogle Scholar
  4. 4.
    Vanderhaeghe H, Dubost M, Fischler M, Malherbe M, Van der Vlies C. A collaborative study of four methods of assay of benzylpenicillin. Anal Chim Acta 1982; 143:191–8.Google Scholar
  5. 5.
    Forsman U, Karlberg B. Titration of 6-aminopenicillanic acid with mercury(II) solution. Anal Chim Acta 1976;86:87–91.PubMedGoogle Scholar
  6. 6.
    Newton GGF, Abraham EP, Kuwabara S. Preliminary observations on the formation and breakdown of ‘cephalosporoic acids’. Antimicrob Agents Chemother 1967: 449–55.Google Scholar
  7. 7.
    Körbl J, Pospisilova B. Merkurimetrické stanovení cephalosporinû. Cesk Farm 1983;32:6–11.PubMedGoogle Scholar
  8. 8.
    Ahrland S, Chatt J, Davies NR. The relative affinities of ligand atoms for acceptor molecules and ions. Quart Rev 1958;12:265–76.Google Scholar
  9. 9.
    Fogg AG, Abdalla MA, Henriques HP. Titrimetric determination of the yield of sulphide formed by alkaline degradation of cephalosporins. Analyst 1982; 107:449–52.Google Scholar
  10. 10.
    Karlberg B, Forsman U. The determination of penicillins by titrations with mercury(II) solution. Anal Chim Acta 1976:83:309–16.PubMedGoogle Scholar
  11. 11.
    Forsman U. Coulometric titration of penicillins and penicillamine with mercury(II). Anal Chim Acta 1977; 93:153–9.PubMedGoogle Scholar
  12. 12.
    Paál T, Molnár M. Selective determination of the penicillin-structure by the mercurimetric method. Gyogyszéreszet 1976;20:8–13.Google Scholar
  13. 13.
    Dobiásovský J, Zýka J. Analytical studies of argentometric determination of penicillin. I. Cesk Farm 1978;7:253–7.Google Scholar
  14. 14.
    Bult A, Dingjan H, Dreijer van der Glas SM, Van Bennekom WP. Generalized theory for two-phase ion-pair and complexometric titrations. I. Two-phase titrations without side reactions. Pharm Weekbl [Sci] 1975;7:260–72.Google Scholar
  15. 15.
    Abd El Wahed MG, Ayad M. Stability constants of Cu+, Fe3+ and Zr4+ chelates of ampicillin, dopamine and α-methyll-dopa in aqueous medium. Anal Lett 1984;17:205–16.Google Scholar
  16. 16.
    Cressman WE, Sugita ET, Doluisio JT, Niebergall PJ. Complexation of penicillins and penicilloic acids by cupric ion. J Pharm Pharmacol 1966;18:801–8.PubMedGoogle Scholar
  17. 17.
    Fazakerley GV, Jackson GE, Linder PW. Equilibrium studies of benzylpenicillinate-thiaprolinate-hippurate and benzylpenicilloate-proton and transition metal(II) ion systems. J Inorg Nucl Chem 1976;38:1397–400.Google Scholar
  18. 18.
    Tiwari A, Chakrawarti PB, Sharma HN. Ag(I), Pb(II) and Zn(II) complexes of penicillin-V. J Ind Chem Soc 1979;56:533–4.Google Scholar
  19. 19.
    Lenz GR, Martell AE. Metal chelates of some sulphur-containing amino acids. Biochemistry 1964;3:745–50.PubMedGoogle Scholar
  20. 20.
    Strand R, Lund W, Aaseth J. Complex formation of zinc, cadmium and mercury with penicillamine. J Inorg Biochem 1983;19:301–9.Google Scholar
  21. 21.
    Hojo Y, Sugita Y, Tanaka H. Organomercury complexes of penicillamine and some other sulfur-containing ligands. J Inorg Nucl Chem 1976;38:641–4.Google Scholar
  22. 22.
    Misono M, Ochiai E, Saito Y, Yoneda Y. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. J Inorg Nucl Chem 1967;29:685–91.Google Scholar
  23. 23.
    Dobiásovský J, Zýka J. Analytical studies of argentometric determination of penicillin. II. Explanation of the course of the potentiometric titration curve. Cesk Farm 1978;7:293–8.Google Scholar
  24. 24.
    Gergely A, Sóvágó I. Complexes of sulfur-containing ligands. I. Factors influencing complex formation between d-penicillamine and copper(II) ion. Bioinorg Chem 1978;9:47–60.PubMedGoogle Scholar
  25. 25.
    Blaszek-Bodo A, Varga A, Kiss I. Titrarea potentiometrica a penicilinelor cu ioni de mercur. Rev Chimie 1978;29:464–7.Google Scholar
  26. 26.
    Doane LM, Stock JT. Determination of thiols by conductomeric titration with mercury(II) chloride in water and inN,N-dimethylformamide. Anal Chem 1978;50:1891–5.Google Scholar
  27. 27.
    Körbl J. Merkurimetrische Bestimmung der natürlichen und halfsynthetischen Penicilline und einiger ihrer Degradationsprodukte. Abstr Fed Int Pharm Stockholm, 1973.Google Scholar
  28. 28.
    Koszegi Szalai H, Paál T, Juhasz Fazekas J. A novel version and the reaction mechanism of the mercurimetric determination of penicillins. Acta Pharm Hung 1985;55:266–76.PubMedGoogle Scholar
  29. 29.
    Doornbos DA, Faber JS. Studies on metal complexes of drugs.d-penicillamine andN-acetyl-d-penicillamine. Pharm Weekbl 1964;99:289–309.PubMedGoogle Scholar
  30. 30.
    Cotton FA, Wilkinson G. Advanced inorganic chemistry: a comprehensive text. 4th ed. New York: John Wiley & Sons, 1980.Google Scholar
  31. 31.
    Doornbos DA. Een nieuwe gehaltebepaling voorl-cysteïne,l-cysteïnehydrochloride,d-penicillamine,d-penicillamine-hydrochloride enN-acetyl-d-penicillamine. Pharm Weekbl 1967;102:1095–108.PubMedGoogle Scholar
  32. 32.
    Doornbos DA, Feitsma MT. The acid strength of the sulfhydryl and ammonium groups inl-cysteine andd-penicillamine; the determination of the micro acid stability constants. Pharm Weekbl 1967;102:587–98.PubMedGoogle Scholar
  33. 33.
    Carthy AJ, Taylor NJ. Binding of inorganic mercury at biological sites: crystal structures of Hg+ complexes with sulfur amino-acids. J Chem Soc Chem Commun 1976:214–6.Google Scholar
  34. 34.
    Rabenstein DL, Fairhurst MT. Nuclear magnetic resonance studies of the solution chemistry of metal complexes, XI. The binding of methylmercury by sulfhydryl-containing amino acids and by glutathione. J Am Chem Soc 1975;97:2086–92.PubMedGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1988

Authors and Affiliations

  • P. C. van Krimpen
    • 1
  • W. P. van Bennekom
    • 1
  • A. Bult
    • 1
  1. 1.Department of Pharmaceutical Analysis, Faculty of PharmacyState University of UtrechtGH Utrechtthe Netherlands

Personalised recommendations