Pharmaceutisch weekblad

, Volume 3, Issue 1, pp 1005–1020 | Cite as

Hydrodynamic approach to dissolution rate

  • H. Grijseels
  • D. J. A. Crommelin
  • C. J. de Blaey
Review Articles


In the pharmaceutical literature the dissolution of solids in liquids is usually described using the stagnant layer model. This model, however, does not reflect the actual situation with respect to the hydrodynamics involved. This review analyses the different hydrodynamic situations in which dissolution may take place.

It appears that dissolution of regular, non-disintegrating surfaces under forced convection, in laminar as well as in turbulent flow, can be described mathematically. The same holds true for dissolution in a laminar natural convection flow parallel to a vertical dissolving surface. All these situations can be treated using a general expression for the dissolution rate (R) containing five basic parameters,i.e. solubility (Cs), diffusion coefficient (D), kinematic viscosity (v), flow velocity (u) and a geometric factor (A) which is a function of the shape and dimensions of the dissolving surface, thus
$$R = KC_S D^\beta {\text{ }}v^\gamma {\text{ }}u^F A$$
The exponentsΒ,γ andε, the proportionality factor K and the geometric factor A, which is defined as A = f (b, l, r, d), depend on the hydrodynamic conditions in each particular case of solvent motion. Most of these values were derived theoretically and confirmed experimentally. In contrast to this it appears to be impossible at present to describe the dissolution process under natural convection conditions if the flow is not parallel to the dissolving surface.

In conclusion it is evident that analysing dissolution processes, using hydrodynamic theories, provides a better insight in the process itself and the factors influencing it both qualitatively and quantitatively. Only this will permit correct interpretation of actual dissolution rate data.


Boundary Layer Dissolution Rate Natural Convection Viscous Sublayer Diffusion Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee, D., andB.K. Gupta (1978)Can. J. Pharm. Sci. 13, 94–97.Google Scholar
  2. Beek, W.J., andK.M.K. Muttzall (1975)Transport Phenomena. John Wiley & Sons Ltd., New York, 1–78, 246–254.Google Scholar
  3. Bird, R.B., W.E. Stewart andE.N. Lightfoot (1960)Transport Phenomena. John Wiley & Sons Ltd., New York, 144, 617.Google Scholar
  4. Bisaillon, S., andR. Tawashi (1971)J. Pharm. Sci. 60, 1874–1877.CrossRefPubMedGoogle Scholar
  5. Brunner, E. (1904)Z. Physik. Chem. 47, 56–102.Google Scholar
  6. Carstensen, J.T. (1972)Theory of pharmaceutical systems I. Academic Press, New York, 219–241.Google Scholar
  7. Crank, J. (1970)The mathematics of diffusion. Clarendon Press, Oxford.Google Scholar
  8. Crommelin, D.J.A. (1979) Ph.D. thesis, Leiden, 80–82.Google Scholar
  9. Dworak, R., andH. Wendt (1977) In:Physicochemical Hydrodynamics: V. G. Levich Festschrift, Vol. 2 (Spalding, D.B., Ed.). Advance Publications, London, 541–552.Google Scholar
  10. Fawzi, M.B., W.I. Higuchi andJ.J. Hefferren (1977)J. Dental. Res. 56, 518–523.CrossRefGoogle Scholar
  11. Fee, J.V., D.J.W. Grant andJ.M. Newton (1976)J. Pharm. Sci. 65, 48–53.CrossRefPubMedGoogle Scholar
  12. Garner, F.H., andJ.M. Hoffman (1961)Am. Inst. Chem. Engrs. J. 7, 148–152.CrossRefGoogle Scholar
  13. Higuchi, W.I. (1980) Personal communication.Google Scholar
  14. Howard, S.A., J.W. Mauger, A. Kwhangsopha andD.A. Pasquerelli (1979)J. Pharm. Sci. 68, 1542–1545.CrossRefPubMedGoogle Scholar
  15. Husar, R.B., andE.M. Sparrow (1968)Intern. J. Heat Mass Tranfer 11, 1206–1208.CrossRefGoogle Scholar
  16. Lagas, M., andC.F. Lerk (1977)Pharm. Weekblad 112, 845–848;Ibidem (1978)113, 1277–1282.Google Scholar
  17. Langenbucher, F. (1973)J. Pharm. Sci. 62, 1737–1738.CrossRefPubMedGoogle Scholar
  18. Lerk, C.F., andM. Lagas (1977)Pharm. Weekblad 112, 925–931.Google Scholar
  19. Lévéque, B. (1928)Ann. Mines No. 12, 13, 201, 305, 381 (seee.g. Levich 1962).Google Scholar
  20. Levich, V.G. (1962)Physiocochemical Hydrodynamics. Prentice Hall, New Jersey, 1–184.Google Scholar
  21. Levy, G., andB. Hayes (1960)New Engl. J. Med. 262, 1053–1058.CrossRefPubMedGoogle Scholar
  22. Mauger, J.W., S.A. Howard andA. Kwhangsopha (1979)J. Pharm. Sci. 68, 1084–1087.CrossRefPubMedGoogle Scholar
  23. Mooney, K.G., M.A. Mintun, K.J. Himmelstein andV.J. Stella (1981a)J. Pharm. Sci. 70, 13–21;Ibidem (1981b) 22–32.CrossRefPubMedGoogle Scholar
  24. Nedich, R.L., andD.O. Kildsig (1972)J. Pharm. Sci. 61, 214–218.CrossRefPubMedGoogle Scholar
  25. Nelson, E. (1958)J. Am. Pharm. Assoc. 47, 297–299.CrossRefGoogle Scholar
  26. Nelson, K.G., andA.C. Shah (1975)J. Pharm. Sci. 64, 610–614.CrossRefPubMedGoogle Scholar
  27. Nernst, W. (1904)Z. Physik. Chem. 47, 52–55.Google Scholar
  28. Nernst, W., andE.S. Merriam (1905)Z. Physik. Chem. 53, 235–244.Google Scholar
  29. Nogami, H., T. Nagai andA. Suzuki (1966)Chem. Pharm. Bull. 14, 329–338.CrossRefPubMedGoogle Scholar
  30. Noyes, A., andW. Whitney (1897)Z. Physik. Chem. 23, 689–693.Google Scholar
  31. Prakongpan, S., W.I. Higuchi, K.H. Kwan andA.M. Molokhia (1976)J. Pharm. Sci. 65, 685–689.CrossRefPubMedGoogle Scholar
  32. Riddiford, A. C. (1966) In:Advances in electrochemistry and electrochemical engineering, Vol. 4 (Delahay, P., Ed.). Interscience, New York, 47–116.Google Scholar
  33. Schoonen, A.J.M. (1980) Ph.D. thesis, Groningen, 62–113.Google Scholar
  34. Shah, A.C., andK.G. Nelson (1975)J. Pharm. Sci. 64, 1518–1520.CrossRefPubMedGoogle Scholar
  35. Shah, A.C., C.B. Peot andJ.F. Ochs (1973)J. Pharm. Sci. 62, 671–677.CrossRefPubMedGoogle Scholar
  36. Shively, C.D., andD.O. Kildsig (1972)J. Pharm. Sci. 61, 1589–1593.CrossRefPubMedGoogle Scholar
  37. Thomas, D.G., andR.A. Armistead (1968)Science 160, 995–996.CrossRefPubMedGoogle Scholar
  38. Travers, D.N., andA.E. Powdrill (1972)J. Pharm. Pharmacol. 24, 153P-154P.Google Scholar
  39. United States Pharmacopeia (1975) 19th Rev., 651.Google Scholar
  40. Velarde, M.G., andC. Normand (1980)Sci. Am. 243, 78–93.CrossRefGoogle Scholar
  41. Virtsava, L.A., Y.R. Dzelme, Y.E. Tiliks andL.T. Bugaenko (1978)Russ. J. Phys. Chem. 52, 1638–1641.Google Scholar
  42. Wagenen, R.A. Van, andJ.D. Andrade (1980)J. Coll. Interf. Sci. 76, 305–314.CrossRefGoogle Scholar
  43. Wagner, C. (1949)J. Phys. Chem. 53, 1030–1033.CrossRefGoogle Scholar
  44. Withey, R.J. (1971)J. Pharm. Pharmacol. 23, 573–582.CrossRefPubMedGoogle Scholar
  45. Withey, R.J., andA.J. Bowker (1972)J. Pharm. Pharmacol. 24, 345–351.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1981

Authors and Affiliations

  • H. Grijseels
    • 1
  • D. J. A. Crommelin
    • 1
  • C. J. de Blaey
    • 1
  1. 1.Department of Pharmaceutics, Subfaculty of PharmacyUniversity of UtrechtGH UtrechtThe Netherlands

Personalised recommendations