Advertisement

Pharmaceutisch Weekblad

, Volume 8, Issue 2, pp 139–144 | Cite as

Intra-arterial administration of hexobarbital enantiomers to the rat: disposition and estimation of apparent extraction ratio

  • M. Van der Graaff
  • N. P. E. Vermeulen
  • D. D. Breimer
Original Articles
  • 16 Downloads

Abstract

The enantiomers of hexobarbital, designated asS(+)-HB andR(−)-HB, were administered intra-arterially to rats in a dose of 25 mg· kg−1. Blood pharmacokinetics of the parent compound and two metabolites as well as urinary excretion of three major metabolites were studied. Using previously obtained data following oral administration ofS(+)-HB andR(−)-HB two different methods for calculation of the hepatic extraction ratio (E) were compared. The metabolite profile in the urine after intra-arterial administration was not basically different from corresponding data on oral administration. The clearance of low-dose, intra-arterially administeredS(+)-HB is useful as an indicator of hepatic blood flow in the rat.

Key words

Blood flow, hepatic Clearance Enantiomers Extraction ratio Hexobarbital Metabolism Pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van der Graaff M, Vermeulen NPE, Joeres RP, Vlietstra T, Breimer DD. Correlations in the metabolism of hexobarbital and antipyrine in rats. J Pharmacol Exp Ther 1983;227:459–65.PubMedGoogle Scholar
  2. 2.
    Van der Graaff M, Vermeulen NPE, Joeres RP, Breimer DD. Disposition of hexobarbital enantiomers in the rat. Drug Metab Dispos 1983;11:489–93.PubMedGoogle Scholar
  3. 3.
    Van der Graaff M, Vermeulen NPE, Langendijk PNJ, Breimer DD. Pharmacokinetics of simultaneously administered hexobarbital and heptabarbital in rats: an alternative approach to metabolic correlation studies. J Pharmacol Exp Ther 1983;225:747–51.PubMedGoogle Scholar
  4. 4.
    Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 1975; 18:377–89.PubMedGoogle Scholar
  5. 5.
    Liehr H, Grün M, Thiel H, Krauss R, Rost R. Hepatic blood flow in rats with galactosamine hepatitis. Acta Hepato Gastroenterol 1972;19:259–63.Google Scholar
  6. 6.
    Ohnhaus EE, Locher JTh. Liver blood flow and volume following chronic phenobarbitone administration. Eur J Pharmacol 1975;31:161–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Denis P, Ossenberg FW, Benhamou J-P. Hepatic blood flow and enzyme induction in the rat. Biochem Pharmacol 1975;24:249–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Gillette JR, Saul WF, Malirig HM. A new principle for estimating hepatic blood flow rates. Pharmacology 1981;23:237–46.PubMedGoogle Scholar
  9. 9.
    Rowland M, Benet LZ, Graham GE. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1977;1:123–7.CrossRefGoogle Scholar
  10. 10.
    Pang KS, Rowland M. Hepatic clearance of drugs, III. Additional experimental evidence supporting the wellstirred model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused rat liverin situ preparation. J Pharmacokinet Biopharm 1977;5:681–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Pantuck EJ, Hsiao K-C, Loub WD, Wattenberg LW, Kuntzman R, Conney AH. Stimulatory effect of vegetables on intestinal drug metabolism in the rat. J Pharmacol Exp Ther. 1976;198:278–83.PubMedGoogle Scholar
  12. 12.
    Lister JL, Virgo BB. Aniline and hexobarbital hydroxylases from rat lung and kidney: neither sex dependent nor inducible with phenobarbital. Can J Physiol Pharmacol 1982;60: 1247–50.PubMedGoogle Scholar
  13. 13.
    Marietta MP, Vesell ES, Hartman RD, Weisz J, Dvorchick B. Characterization of cytochrome P-450 dependent aminopyrineN-demethylase in rat brain: comparison with hepatic aminopyrineN-demethylation. J Pharmacol Exp Ther 1979;208:271–9.PubMedGoogle Scholar
  14. 14.
    Rane A, Wilkinson GR, Shand DG. Predictions of hepatic extraction ratio fromin vitro measurement of intrinsic clearance. J Pharmacol Exp Ther 1977, 200: 420–4.PubMedGoogle Scholar
  15. 15.
    Kupfer D, Rosenfeld J. A sensitive radioactive assay for hexobarbital hydroxylase in hepatic microsomes. Drug Metab Dispos 1973;1:760–5.PubMedGoogle Scholar
  16. 16.
    Heinemeyer G, Nigam S, Hildebrandt AG. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit. Naunyn-Schmiedebergs Arch Pharmacol 1980;314:201–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Dvorchick BH, Hartman RD. Hydroxylation of hexobarbital and benzo(a)pyrene by hepatic microsomes isolated from the fetal stumptailed monkey (Macaca arctoides). A development study. Biochem Pharmacol 1982;31:1150–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Igari Y, Sugiyama Y, Awaza S, Hanamo M. Comparative physiologically based pharmacokinetics of hexobarbital, phénobarbital and thiopental in the rat. J Pharmacokinet Biopharm 1982;10:53–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Van den Berg AP. Cytochrome P-450 substrate interaction and hepatic drug metabolism in the mouse. Rotterdam: Erasmus Universiteit Rotterdam, 1977. Dissertation.Google Scholar
  20. 20.
    Miyano K, Fujii Y, Toki S. Stereoselective hydroxylation of hexobarbital enantiomers by rat liver microsomes. Drug Metab Dispos 1980;8:104–10.PubMedGoogle Scholar
  21. 21.
    Drew R, Priestly BG, O'Reilly WJ. Hexobarbital pharmacokinetics after ligation of the common bile duct. J Pharmacol Exp Ther 1977;201:534–40.PubMedGoogle Scholar
  22. 22.
    Vermeulen NPE, Danhof M, Setiawan I (Thio TH), Breimer DD. Disposition of hexobarbital in the rat: estimation of ‘first-pass’ elimination and influence of ether anaesthesia. J Pharmacol Exp Ther 1983;226: 201–5.PubMedGoogle Scholar
  23. 23.
    Griffeth LK, Rosen GM, Rauckman EJ. Effects of model traumatic injury on hepatic drug metabolism in the rat. II.In vivo metabolism of hexobarbital and zoxazolamine. Drug Metab Dispos 1984;12:582–7.PubMedGoogle Scholar
  24. 24.
    Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. Philadelphia: Lea & Febiger, 1980.Google Scholar
  25. 25.
    Roth RA, Rubin RJ. Role of blood flow in carbon monoxide and hypoxic hypoxia-induced alterations in hexobarbital metabolism in rats. Drug Metab Dispos 1976;4:460–7.PubMedGoogle Scholar
  26. 26.
    Richter E, Heusler H, Epping J, et al. Glucuronide conjugation as an alternative biotransformation pathway of hexobarbital and methohexital in rats with experimental hepatitis and cholestasis [Abstract]. 17th Meeting of the European Association for the Study of the Liver. Göteborg, Sweden, September 9–11, 1982.Google Scholar
  27. 27.
    Miyano K, Ota T, Toki S. Stereoselective formation of glucuronides in metabolism of hexobarbital enantiomersin vivo. Drug Metab Dispos 1981;9:60–4.PubMedGoogle Scholar

Copyright information

© Bohn, Scheltema & Holkema 1986

Authors and Affiliations

  • M. Van der Graaff
    • 1
  • N. P. E. Vermeulen
    • 1
  • D. D. Breimer
    • 1
  1. 1.Center for Bio-Pharmaceutical Sciences, Division of PharmacologyState University of Leiden Sylvius LaboratoriesRA LeidenThe Netherlands

Personalised recommendations