Advertisement

Experientia

, Volume 36, Issue 1, pp 90–92 | Cite as

Adenylate cyclase in the developing rat cerebral cortex and olfactory bulb

  • X. Cousin
  • J. L. Davrainville
Specialia

Summary

Activities of adenylate cyclase, measured either in the absence of sodium fluoride and Triton X-100, are determined in cerebral cortex and olfactory bulb homogenate of rats of 1 to 35 days of postnatal age. Differences in properties of the enzyme in the 2 structures are demonstrated.

Keywords

Enzyme Sodium Fluoride Cerebral Cortex Olfactory Bulb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kaminskas, M. Field and E.C. Henshaw, Biochim. biophys. Acta444, 539 (1976).CrossRefGoogle Scholar
  2. 2.
    J.B. Kurz and D.L. Friedman, J. cyclic Nucl. Res.2, 405 (1976).Google Scholar
  3. 3.
    J.C. Muir and D. Templeton, J. Physiol., Lond.259, 47 (1976).CrossRefGoogle Scholar
  4. 4.
    M.J. Berridge, J. cyclic Nucl. Res.1, 305 (1975).Google Scholar
  5. 5.
    H.I. Chiu, D.J. Franks, R. Rowe and D. Malamud, Biochim. biophys. Acta451, 29 (1976).CrossRefGoogle Scholar
  6. 6.
    A. Edström, J. Neurobiol.8, 371 (1977).CrossRefGoogle Scholar
  7. 7.
    A. Menevse, G. Dodd and T.M. Poynder, Biochem. biophys. Res. Commun.77, 671 (1977).CrossRefGoogle Scholar
  8. 8.
    F.G. Standaert, K.L. Dretchen, L.R. Skirboll and V.H. Morgenroth III, J. Pharmac. exp. Ther.199, 544 (1976).Google Scholar
  9. 9.
    I.B. Levitan and S.N. Treistman, Brain Res.136, 307 (1977).CrossRefGoogle Scholar
  10. 10.
    K.G. Beam and P. Greengard, Cold Spring Harbor Symp. quant. Biol.40, 157 (1976).CrossRefGoogle Scholar
  11. 11.
    M.E. Charness, D.B. Bylund, B.S. Beckman, M.D. Hollenberg and S.H. Snyder, Life Sci.19, 243 (1976).CrossRefGoogle Scholar
  12. 12.
    Y. Giudicelli and R. Pecquery, Eur. J. Biochem.90, 413 (1978).CrossRefGoogle Scholar
  13. 13.
    I. Fish and M. Winick, Exp. Neurol.25, 534 (1969).CrossRefGoogle Scholar
  14. 14.
    B. Weiss, J. Neurochem.18, 469 (1971).CrossRefGoogle Scholar
  15. 15.
    X. Cousin and J.L. Davrainville, Neurosci. Lett.S 1, S26 (1978).Google Scholar
  16. 16.
    I.A. MacDonald, Experientia30, 1485 (1974).CrossRefGoogle Scholar
  17. 17.
    K. Burton, Biochem. J.62, 315 (1956).CrossRefGoogle Scholar
  18. 18.
    S. Zamenhof, L. Grauel, E. van Marthens and R.A. Stillinger, J. Neurochem.19, 61 (1972).CrossRefGoogle Scholar
  19. 19.
    E.W. Sutherland, T.W. Rall and T. Menon, J. biol. Chem.237, 1220 (1962).PubMedGoogle Scholar
  20. 20.
    L.J. Ignarro and R.A. Gross, Biochim. biophys. Acta541, 170 (1978).CrossRefGoogle Scholar
  21. 21.
    G.C. Palmer, D.J. Jones, M.A. Medina, S.J. Palmer and W.B. Stavinoha, Neuropharmacology17, 491 (1978).CrossRefGoogle Scholar
  22. 22.
    P. Skolnick, L.P. Stalvey, J.W. Daly, E. Hoyler and J.N. Davis, Eur. J. Pharmac.47, 201 (1978).CrossRefGoogle Scholar
  23. 23.
    G. Jancsö and M. Wollemann, Brain Res.123, 323 (1977).CrossRefGoogle Scholar
  24. 24.
    M.I. Kalish, M.S. Katz, M.A. Pineyro and R.I. Gregerman, Biochim. biophys. Acta483, 452 (1977).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • X. Cousin
    • 1
  • J. L. Davrainville
    • 1
  1. 1.Laboratoire de Physiologie Générale IIUniversité de Nancy, INancy-CédexFrance

Personalised recommendations