Pharmacokinetics: metabolism and renal excretion of quinolones in man
Quinolones in Perspective
- 179 Downloads
- 10 Citations
Abstract
The quinolones are relatively poorly absorbed from the gastrointestinal tract. The elimination proceeds mainly by renal excretion. The half-life of elimination depends on the molecular structure and varies between 2 and 10 h. Impaired kidney function is expected to increase the half-life of elimination. though this effect is not always observed. Since the 4-oxo-metabolites show a higher renal clearance than the parent drug, renal impairment will result in a cumulation of the metabolites in the body.
Key words
Absorption Kidney failure Metabolism Pharmacokinetics Quinolones Renal excretionPreview
Unable to display preview. Download preview PDF.
References
- 1.Cuisinaud G, Ferry N, Pozet N, Zech PY, Sassard J. Nalidixic acid kinetics in renal insufficiency. Br J Clin Pharmacol 1982;14:489–93.Google Scholar
- 2.Ferry N, Cuisinaud G, Pozet N, Zech PY, Sassard J. Nalidixic kinetics after single and repeated oral doses. Clin Pharmacol Ther 1981;29:695–8.Google Scholar
- 3.Vree TB, Baars AM, Wijnands WJA. High performance liquid chromatography and preliminary pharmacokinetics of enoxacin and its 4-oxo metabolite in plasma, urine and saliva of man. J Chromatogr 1985;343:449–54.Google Scholar
- 4.Montay G, Goueffon Y, Roquet F. Absorption, distribution, metabolic fate, and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys and humans. Antimicrob Agents Chemother 1984;25:463–72.Google Scholar
- 5.Montay G, Tassel JP. Improved high-performance liquid Chromatographic determination of pefloxacin and its metabolite norfloxacin in human plasma and tissue. J Chromatogr 1985;339:214–8.Google Scholar
- 6.Wolff M, Regnier B, Daldoss C, Nkam M, Vachon F. Penetration of pefloxacin into cerebrospinal fluid of patients with meningitis. Antimicrob Agents Chemother 1984;26:289–91.Google Scholar
- 7.Eandi M, Viano I, Di Nola F, Leone L, Genazzani E. Pharmacokinetics of norfloxacin in healthy volunteers and patients with renal and hepatic damage. Eur J Clin Microbiol 1983;2:253–9.Google Scholar
- 8.Forchetti C, Flammini D, Carlucci G, Cavicchio G, Vaggi L, Bologna M. High-performance liquid chromatography procedure for the quantitation of norfloxacin and metabolites in urine, serum and tissues. J Chromatogr 1984;309:177–82.Google Scholar
- 9.Ozaki T, Uchida H, Irikura T. Study on the metabolism of AM-715 (norfloxacin) in humans by means of high-performance liquid chromatography. Chemotherapy (Tokyo) 1981;29(suppl 4):128–35.Google Scholar
- 10.Pauliukonis LT, Musson DG, Bayne WF. Quantitation of norfloxacin, a new antibacterial agent in human plasma and urine by ion-pair reverse-phase chromatography. J Pharm Sci 1984;73:99–102.Google Scholar
- 11.Sakano T, Masuda S, Amano T. Quantitative analysis of cinoxacin metabolites in human urine. Chemotherapy (Tokyo) 1980;28(suppl 4):139–42.Google Scholar
- 12.Jehl F, Gallion C, Debs J, Brogard JM, Monteil H, Minck R. High-performance liquid Chromatographic method for determination of ciprofloxacin in biological fluids. J Chromatogr 1985;339:347–57.Google Scholar
- 13.Joos B, Ledergerber B, Flepp F, Bettex J-D, Lüthy R, Siegenthaler W. Comparison of high-pressure liquid chromatography and bioassay for determination of ciprofloxacin in serum and urine. Antimicrob Agents Chemother 1985;27:353–6.Google Scholar
- 14.Weber A, Chaffin D, Smith A, Opheim KE. Quantitation of ciprofloxacin in body fluids by high-pressure liquid chromatography. Antimicrob Agents Chemother 1985;27:531–4.Google Scholar
- 15.Smethurst AM, Mann WC. Determination by high performance liquid chromatography of pipemidic acid in human serum and urine. J Chromatogr 1983;274:421–7.Google Scholar
- 16.Black HR, Israel KS, Wolen RL, et al. Pharmacology of cinoxacin in humans. Antimicrob Agents Chemother 1979;15:165–70.Google Scholar
- 17.Ledergerber B, Bettex JD, Joos B, Flepp M, Lüthy R. Effect of standard breakfast on drug absorption and multiple dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother 1985;27:350–2.Google Scholar
- 18.Israel KS, Black HR, Nelson RL, et al. Cinoxacin: pharmacokinetics and the effect of probenecid. J Antimicrob Chemother 1981;8:447–57.Google Scholar
- 19.Rodriguez N, Madsen PO, Welling PG. Influence of probenecid on serum levels and urinary excretion of cinoxacin. Antimicrob Agents Chemother 1979;15:465–9.Google Scholar
- 20.Sisca TS. Cinoxacin: a review. Drugs 1983;25:546–69.Google Scholar
- 21.Shimada J, Yamaji T, Ueda Y, Uchida H, Kusajima H, Irikura T. Mechanism of renal excretion of AM-715 (norfloxacin), a new quinolonecarboxylic acid derivative, in rabbits, dogs and humans. Antimicrob Agents Chemother 1983;23:1–7.Google Scholar
- 22.Janssen TJ, Wijnands WJA, Vree TB, et al. Kinetiek en behandeling van drie doseringen met carbamazepine (Tegretol®). TGO/JDR 1983;8:1707–17.Google Scholar
- 23.Vree TB, Hekster YA, Tijhuis MW. Metabolism of sulfonamides. Antibiot Chemother 1985;34:5–65.Google Scholar
- 24.Brogard JM, Comte F, Lavillaureix J. Comparative pharmacokinetic profiles of cinoxacin and pipemidic acid in humans. Eur J Drug Metab Pharmacokinet 1983;8:251–9.Google Scholar
- 25.Männistö P, Solkinen A, Mäntylä R, et al. Pharmaco-kinetics of pipemidic acid in healthy middle-aged volunteers and elderly patients with renal insufficiency. Xenobiotica 1984;14:339–47.Google Scholar
- 26.Brogard JM, Jehl F, Arnaud JP, et al. Ciprofloxacine: évaluation de son élimination biliaire chez l'homme. Schweiz Med Wochenschr 1985;115:448–53.Google Scholar
- 27.Eskens GTF, Goudkuil J. Informatie over geneesmiddelen: Pipram®. TGO/JDR 1983;8:1743–5.Google Scholar
- 28.Klinge E, Männistö PT, Mäntylä R, Mattila J, Hänninen U. Single- and multiple-dose pharmacokinetics of pipemidic acid in normal volunteers. Antimicrob Agents Chemother 1984;526:69–73.Google Scholar
- 29.Wise R, Lockley R, Dent J, Webberly M. Pharmaco-kinetics and tissue penetration of enoxacin. Antimicrob Agents Chemother 1984;26:17–9.Google Scholar
- 30.Wolf R, Eberl R, Dunky A, et al. The clinical pharmacokinetics and tolerance of enoxacin in healthy volunteers. J Antimicrob Chemother 1984;14(suppl C):63–9.Google Scholar
- 31.Nakano H, Nihira H, Kamiya A, Hori R. Influence of renal impairment on multiple-dose pharmacokinetics of ofloxacin. In: Ofloxacin. Selected proceedings of the 24th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington DC, October 8–10, 1984. Amsterdam —Tokyo: Excerpta Medica 1985:63–8.Google Scholar
- 32.Admani ZN, Wise R, Weston D, Crump B. The pharmacokinetics and tissue penetration of norfloxacin. J Antimicrob Chemother 1984;13:87–92.Google Scholar
- 33.Nakamura R, Yamaguchi T, Sekine Y, Hashimoto M. Determination of a new antibacterial agent (AT-2266) and its metabolites in plasma and urine by high performance liquid chromatography. J Chromatogr 1983;278:321–8.Google Scholar
- 34.Swanson BN, Boppana VK, Vlasses PH, Rotmensch HH, Ferguson RK. Norfloxacin disposition after sequentially increasing oral doses. Antimicrob Agents Chemother 1983;23:284–8.Google Scholar
- 35.Barre J, Houin G, Tillement JP. Dose-dependent pharmacokinetic study of pefloxacin, a new antibacterial agent, in humans. J Pharm Sci 1984;73:1379–82.Google Scholar
- 36.Aronoff GE, Kenner CH, Sloan RS, Pottratz ST. Multiple dose ciprofloxacin kinetics in normal subjects. Clin Pharmacol Ther 1984;36:384–8.Google Scholar
- 37.Crump B, Wise R, Dent J. Pharmacokinetics and tissue penetration of ciprofloxacin. Antimicrob Agents Chemother 1983;24:784–6.Google Scholar
- 38.Gonzalez MA, Uribe F, Moisen SD, et al. Multiple-dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother 1984;26:741–4.Google Scholar
- 39.Höffler D, Dalhoff A, Gau W, Beermann D, Michl A. Dose- and sex-independent disposition of ciprofloxacin. Eur J Clin Microbiol 1984;3:363–6.Google Scholar
- 40.Wise R, Lockley RM, Webberly M, Dent J. Pharmaco-kinetics of intravenously administered ciprofloxacin. Antimicrob Agents Chemother 1984;26:208–10.Google Scholar
- 41.Walenkamp GHIM, Vree TB. Treatment of a patient with impaired renal function with gentamicin-PMMA-beads. Arch Orthop Trauma Surg 1981;99:137–41.Google Scholar
- 42.Hughes PJ, Webb DB, Asscher AW. Pharmacokinetics of norfloxacin (MK366) in patients with impaired kidney function — some preliminary results. J Antimicrob Chemother 1984;13 (suppl B):55–7.Google Scholar
- 43.Szwed JJ, Brannon DE, Sloan RS, Luft FC. Pharmaco-kinetics of cinoxacin in patients with renal failure. J Antimicrob Chemother 1978;8:451–4.Google Scholar
- 44.Ohkawa M, Sugata T, Sawaki M, Okasho A, Kuroda K, Yamada H. Pharmacokinetics of cinoxacin in normal volunteers and patients with impaired renal function. J Antimicrob Chemother 1981;8:447–51.Google Scholar
- 45.Brumfitt W, Franklin I, Grady D, Hamilton-Miller JMT, Iliffe A. Changes in the pharmacokinetics of ciprofloxacin and fecal flora during administration of a 7-day course to human volunteers. Antimicrob Agents Chemother 1984;26:757–61.Google Scholar
- 46.Cofsky RD, Du Bouchet L, Landesman SH. Recovery of norfloxacin in feces after administration of a single oral dose to human volunteers. Antimicrob Agents Chemother 1984;26:110–1.Google Scholar
- 47.Wingerder W, Graefe K-H, Gau W, Föster D, Beermann D, Schacht P. Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. Eur J Clin Microbiol 1984;3:355–9.Google Scholar
- 48.Barbeau G, Belanger P-M. Pharmacokinetics of nalidixic acid in old and young volunteers. J Clin Pharmacol 1982;22:490–6.Google Scholar
Copyright information
© Royal Dutch Association for Advancement of Pharmacy 1986