Advertisement

Pharmaceutisch Weekblad

, Volume 8, Issue 1, pp 1–21 | Cite as

Fluorinated quinolones

A review of their mode of action, antimicrobial activity, pharmacokinetics and clinical efficacy
  • R. Janknegt
Review Articles

Abstract

Quinolones, chemically related to nalidixic acid, have a strong and rapid bactericidal action against Gram-negative bacteria, includingPs. aeruginosa, someMycobacteria, Legionella andStaphylococci. Streptococci and anaerobic bacteria are usually less sensitive. The quinolones exert their bactericidal action through inhibition of the enzyme DNA gyrase. Quinolones are absorbed for 50–100% from the gastro-intestinal tract, their volume of distribution is generally high (2 l/kg) and high concentrations are reached in almost all organs. The elimination half-lives range from 4 to 14 h. The efficacy of quinolones in urinary tract infections has been shown in many studies. They also seem to be effective in many serious infections. In animal studies their efficacy was generally equal or superior to aminoglycosides. Until now only mild and infrequent side effects have been reported.

Key words

Drug evaluation Drug interactions Drug resistance Mechanism of action Minimum inhibitory concentration Pharmacokinetics Quinolones Side effects Structure-activity relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith JT. Chemistry and mode of action of 4-quinolone agents. Fortschr Antimikrob Chemother 1984:3–5:493–508.Google Scholar
  2. 2.
    Shah PM. Gyrase inhibitors - a new group of antibacterial agents. Quinolones Bull October 1984;1.Google Scholar
  3. 3.
    Schentag JJ, Domagala JM. Structure-activity relationships with the quinolone antibiotics. Res Clin Forums 1985;7:9–15.Google Scholar
  4. 4.
    Wentland MP, Bailey DM, Cornett JB, et al. Novel amino-substituted 3-quinolone carboxylic acid antibacterial agents. J Med Chem 1984;27:1103–8.Google Scholar
  5. 5.
    Mahmood F, Mahmood NH, Holmes WH. Antibacterial action of quinolones onE. coli. Structure-activity relationships. Zentralbl Bakteriol Mikrobiol Hyg [B] 1980:329–35.Google Scholar
  6. 6.
    Abstracts of the 14th International Congress of Chemotherapy, Kyoto, June 23–28, 1985. Kyoto: International Society of Chemotherapy, 1985.Google Scholar
  7. 7.
    Crumplin GC, Midgley JM, Smith JT. Mechanism of action of nalidixic acid and its congeners. Top Antibiot Chem 1980;3:1138.Google Scholar
  8. 8.
    Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother 1975;8:251–61.Google Scholar
  9. 9.
    Kayser FH. The quinolones: mode of action and mechanism of resistance. Res Clin Forums 1985;7:17–27.Google Scholar
  10. 10.
    Geliert M, Mizuuchi K, O'Dea MH, et al. DNA gyrase. an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 1976;73:3872–8.Google Scholar
  11. 11.
    Geliert M, O'Dea MH, Otoh T, et al. Novobiocin and coumermycin inhibit DNA supercoiling by DNA gyrase. Proc Natl Acad Sci USA 1976;73:4474–8.Google Scholar
  12. 12.
    Sato K, Hirai K, Inone M. et al. Antibacterial activity of ofloxacin and its mode of bactericidal action. In ref. 151:51–8.Google Scholar
  13. 13.
    Smith JT, Ratcliffe NT. Ciprofloxacin and ofloxacin possess an extrabactericidal mechanism absent from other 4-quinolone antibacterial agents. In ref. 151:45–50.Google Scholar
  14. 14.
    Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drug is DNA. Proc Natl Acad Sci USA 1985;82:307–11.Google Scholar
  15. 15.
    Fass RJ.In vitro activity of ciprofloxacin. Antimicrob Agents Chemother 1984;24:568–74.Google Scholar
  16. 16.
    Chin NX, Neu HC. Ciprofloxacin, a quinolone carboxylic acid compound active against aerobic and anaerobic bacteria. Antimicrob Agents Chemother 1984;25:319–26.Google Scholar
  17. 17.
    Van Caekenberghe DL, Pattyn SR.In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinoline derivatives. Antimicrob Agents Chemother 1984;25:518–21.Google Scholar
  18. 18.
    Goossens H, De Mol P, Coignau H, et al. Comparativein vitro activities of azthreonam, ciprofloxacin, norfloxacin, ofloxacin, HR 810, RU 28965 and other agents against enteropathogens. Antimicrob Agents Chemother 1985;27:388–92.Google Scholar
  19. 19.
    Cullmann W, Stieglitz M, Baars B, Opferkuch W. Comparative evaluation of recently developed quinolone compounds, with a note on the frequency of resistant mutants. Chemotherapy 1985;31:19–28.Google Scholar
  20. 20.
    Felmingham D., O'Hare M. D., Gruneberg RN, et al. The comparative activity of 11 quinoline antibiotics againstN. gonorrhoeae. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/7-7.Google Scholar
  21. 21.
    Wise R, Andrews JM, Edwards LJ.In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother 1983;23:559–64.Google Scholar
  22. 22.
    Cornett JB, Wagner RB, Dobson RA.In vitro andin vivo antibacterial activity of the fluoroquinolone WIN 49375. Antimicrob Agents Chemother 1985;27:4–10.Google Scholar
  23. 23.
    Noone P. Sisomicin, netilmicin and dibekacin. A review of their antibacterial activity and therapeutic use. Drugs 1983;27:548–78.Google Scholar
  24. 24.
    Chin NX, Neu HC.In vitro activity of enoxacin, a new quinolone carboxylic acid, compared with those of norfloxacin, new betalactams, aminoglycosides and trimethoprim. Antimicrob Agents Chemother 1983;24:754–63.Google Scholar
  25. 25.
    Righter J.In vitro activity of ciprofloxacin, azthreonam and ceftazidime againstS. marcescens andP. aeruginosa. Eur J Clin Microbiol 1984;3:368–9.Google Scholar
  26. 26.
    Bauernfeind A. Quinolones; active againstPseudomonas or justP. aeruginosa? Quinolones Bull June 1985;1:3–4.Google Scholar
  27. 27.
    Abstracts of the 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10, 1984. Washington DC: American Society for Microbiology, 1984.Google Scholar
  28. 28.
    Scribner R, Weber A, Marks MI.In vitro activity of ofloxacin against bacterial isolates from paediatric patients. In ref. 151:14–21.Google Scholar
  29. 29.
    Chartrand SA, Scribner RK, Weber AH, Welch DF, Marks MI.In vitro activity of CI-919, an oral antipseudomonal compound. Antimicrob Agents Chemother 1983;123:658–63.Google Scholar
  30. 30.
    Bauernfeind A, Petermüller CH. Vergleich der antibakteriellen Profile von Ciprofloxacin, Norfloxacin, Pefloxacin, Ofloxacin, Enoxacin, Pipemidsäure und Nalidixinsäure. Fortschr Antimikrob Chemother 1985;3–5;531–48.Google Scholar
  31. 31.
    Van Landuyt HW, Rummens JL, Boelaert J, Lambert AM.In vitro activity of ofloxacin, compared with six other quinolones and five beta-lactams. In ref. 151:26–30.Google Scholar
  32. 12.
    Goodman LJ, Fliegelman RM, Trenholme GM, et al. Comparativein vitro activity of ciprofloxacin againstCampylobacter spp. and other bacterial enteric pathogens. Antimicrob Agents Chemother 1984;25:504–6.Google Scholar
  33. 33.
    Barry AL, Jones RN, Thornsberry C, Ayers LW, Gerlach EH, Sommers HH. Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin and nalidixic acid. Antimicrob Agents Chemother 1984;25:633–7.Google Scholar
  34. 34.
    Eliopoulos GM, Gardella A, Moellering RC.In vitro activity of ciprofloxacin, a new carboxyquinoline anti-microbial agent. Antimicrob Agents Chemother 1984;25:331–5.Google Scholar
  35. 35.
    Bauernfeind A, Petermüller C.In vitro activity of ciprofloxacin, norfloxacin and nalidixic acid. Eur J Clin Microbiol 1983;2:111–5.Google Scholar
  36. 36.
    Siporin C, Towse G. Enoxacin: world widein vitro-activity against 22451 clinical isolates. J Antimicrob Chemother 1984;14 (suppl C):47–55.Google Scholar
  37. 37.
    King A, Shannon K, Phillips I. Thein vitro activity of ciprofloxacin and nalidixic acid. J Antimicrob Chemother 1984;13:325–31.Google Scholar
  38. 38.
    Goldstein EJ, Citron DM. Comparative activity of the quinolones against anaerobic bacteria isolated at community hospitals. Antimicrob Agents Chemother 1985;27:657–9.Google Scholar
  39. 39.
    Suther VL, Kwok YY, Bulkacz J. Comparative activity of ciprofloxacin against anaerobic bacteria. Antimicrob Agents Chemother 1985;27:427–8.Google Scholar
  40. 40.
    Isaacson DM, Foleno B.In vitro activity of a new quinolone antimicrobial, ofloxacin, againstLegionella and other selected respiratory pathogens. In ref. 151:59–62.Google Scholar
  41. 41.
    Felmingham D, O'Hare MD, Robbins MJ, et al. Comparativein vitro study with 4-quinolone anti-microbials. Drugs Exp Clin Res 1985;11:317–29.Google Scholar
  42. 42.
    Borobio MV, Perea EJ. Effect of inoculum, pH and medium on the activity of ciprofloxacin against anaerobic bacteria. Antimicrob Agents Chemother 1984;25:342–3.Google Scholar
  43. 43.
    Greenwood D, Laverick A. Activities of newer quinolones againstLegionella group organisms. Lancet 1983;2:279–80.Google Scholar
  44. 44.
    Ruckdeschel G, Ehret W, Ahl A. Susceptibility ofLegionella spp. to quinolone derivates and related organic acids. Eur J Clin Microbiol 1984;3:373.Google Scholar
  45. 45.
    Roudier G, Bornstein N, Fleurette J. Susceptibility ofLegionella spp. to pefloxacin and five other quinolone antibiotics. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-13.Google Scholar
  46. 46.
    Heessen FW, Muyjens HL.In vitro activity of ciprofloxacin, norfloxacin, pipemidic acid, cinoxacin and nalidixic acid againstC. trachomatis. Antimicrob Agents Chemother 1984;25:123–4.Google Scholar
  47. 47.
    Ridgway GL, Mumtaz G, Gabriel FC, Oriel JD. The activity of ciprofloxacin and other 4-quinolones againstC. trachomatis and mycoplasmasin vitro. Eur J Clin Microb 1984;3:344–6.Google Scholar
  48. 48.
    Freeman S, Wormuth J, Cornett J.In vitro activity of amifloxacin againstC. trachomatis andU. urealyticum. Eur J Clin Microbiol 1985;4:515–6.Google Scholar
  49. 49.
    Van Roosbroeck RJ, Provinciael D, Van Caeckenberghe DL. Activity of the newer quinolones againstC. trachomatis. Br J Vener Dis 1984;60:350.Google Scholar
  50. 50.
    Bailey JM, Heppleston C, Richmond S. Comparison of thein vitro activities of ofloxacin and tetracycline againstC. trachomatis as assessed by indirect immuno-fluorescence. Antimicrob Agents Chemother 1984;26:13–6.Google Scholar
  51. 51.
    Hart CA, How SJ, Hobson J. Activity of ciprofloxacin against genital tract pathogens. Br J Vener Dis 1984;60:316–8.Google Scholar
  52. 52.
    Abstracts of the 4th Mediterranean Congress of Chemotherapy, Rhodos, October 19–25, 1984.Google Scholar
  53. 53.
    Knothe H.In vitro activity of gyrase inhibitors. Quinolones Bull October 1984;1.Google Scholar
  54. 54.
    Gaya H, Chadwick MV.In vitro activity of ciprofloxacin againstMycobacteria. Eur J Clin Microbiol 1984;4:345–7.Google Scholar
  55. 55.
    Shrire L, Saunders J, Traynor R, Koornhof HJ. A laboratory assessment of ciprofloxacin and comparable antimicrobial agents. Eur J Clin Microbiol 1984;3:328–32.Google Scholar
  56. 56.
    Van der Auwera P, De Moor G, Lacroix G, Mambour A, Rossion N, Schuyteneer F.In vitro activity of enoxacin compared with norfloxacin and amikacin. Eur J Clin Microbiol 1985;4:55–8.Google Scholar
  57. 57.
    Wise R, Andrews JM, Danks G.In vitro activity of enoxacin, a new quinolone derivative compared with that of other antimicrobial agents. J Antimicrob Chemother 1984;13:237–44.Google Scholar
  58. 58.
    Duval J, Acar JF, Bergogne-Berezin E.In vitro activity of pefloxacin against 3422 hospital strains. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-2.Google Scholar
  59. 59.
    Thabaut A, Durosoir JL. Activité antibactérienne comparée in vitro de la péfloxacine, de l'acide nalidixique, de l'acide pipémidique et de la fluméquine. Pathol Biol (Paris) 1982;30:394–7.Google Scholar
  60. 60.
    John JF, Twitty JA. Amifloxacin activity against well-defined gentamicin resistant Gram-negative bacteria. Antimicrob Agents Chemother 1984;26:781–4.Google Scholar
  61. 61.
    Pohlod DJ, Saravolatz LD.In vitro susceptibility of 393 recent clinical isolates to WIN 49375, cefotaxime, tobramycin and piperacillin. Antimicrob Agents Chemother 1984;25:377–9.Google Scholar
  62. 62.
    Muytjens HL, Van de Ros-van de Repe J, Van Veldhuizen G. Comparative activities of ciprofloxacin, norfloxacin, pipemidic acid and nalidixic acid. Antimicrob Agents Chemother 1983;24:302–4.Google Scholar
  63. 63.
    Hoogkamp-Korstanje JA. Comparativein vitro activity of five quinolone derivatives and five other antimicrobial agents used in oral therapy. Eur J Clin Microbiol 1984;3:333–8.Google Scholar
  64. 64.
    Reeves DS, Bywater MJ, Holt HA, White LO.In vitro studies with ciprofloxacin, a new 4-quinolone compound. J Antimicrob Chemother 1984;13:333–46.Google Scholar
  65. 65.
    Duncan IB, Skulnick M, Marshall PW.In vitro activity of enoxacin against aminoglycoside resistant Gram-negative bacilli and other clinical isolates. J Antimicrob Chemother 1984;14(suppl C):1–6.Google Scholar
  66. 66.
    Seibert G, Kiesel N, Limbert M. Die antibakterielle Aktivitätin vitro von Ofloxacin im Vergleich mit anderen oral verabreichbaren antimikrobiellen Substanzen bei Ampicillin resistenten klinische Isolaten. Arzneim Forsch/Drug Res 1984;34:1552–4.Google Scholar
  67. 67.
    Roy C, Foz A, Segura C, et al. Activity of ciprofloxacin againstP. aeruginosa and ampicillin-resistant Entero-bacteriaceae. Infection 1983;11:326–8.Google Scholar
  68. 68.
    Seibert G, Limbert M, Kiesel N. Comparison of the antibacterial invitro andin vivo activity of ofloxacin and nalidixic acid analogues. Eur J Clin Microbiol 1983;2:548–53.Google Scholar
  69. 69.
    Bauernfeind A, Ullmann U.In vitro activity of enoxacin, ofloxacin, norfloxacin and nalidixic acid. J Antimicrob Chemother 1984;14(suppl C):33–7.Google Scholar
  70. 70.
    Olsson-Liljequist B.In vitro activity of ciprofloxacin againstBacteroides, H. influenzae andB. catarrhalis. Eur J Clin Microbiol 1984;3:370–1.Google Scholar
  71. 71.
    Clarke AM, Zemcov SJ, Campbell ME.In vitro activity of pefloxacin compared with enoxacin, norfloxacin, gentamicin and new betalactams. J Antimicrob Chemother 1985;15:39–44.Google Scholar
  72. 72.
    Peeters M, Van Dyck E, Piot P.In vitro activities of the spectinomycin analog U-63366 and four quinolone derivatives againstN. gonorrhoeae. Antimicrob Agents Chemother 1984;26:608–9.Google Scholar
  73. 73.
    Hawkey PM, Hawkey CA. Comparativein vitro activity of quinolone carboxylic acids againstProteeae. J Antimicrob Chemother 1984;14:485–9.Google Scholar
  74. 74.
    Zeiler HJ, Metzger KG, Schacht P, Groke K. Assessment of thein vitro andin vivo activity of ciprofloxacin measured against current standards of therapy. Drugs Exp Clin Res 1985;11:343–50.Google Scholar
  75. 75.
    Iravani A, Welty GS, Newton BR, Richard GA. Effects of changes in pH. medium and inoculum size on thein vitro activity of amifloxacin against urinary isolates ofS. saprophyticus andE. coli. Antimicrob Agents Chemother 1985;27:449–51.Google Scholar
  76. 76.
    Zeiler HJ. Influence of pH and human urine on the antibacterial activity of ciprofloxacin, norfloxacin and ofloxacin. Drugs Exp Clin Res 1985;11:335–8.Google Scholar
  77. 77.
    Efstriatiou E, Sahin A, Giamarellou H.In vitro studies with ciprofloxacin, a nalidixic acid analogue. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/7-3.Google Scholar
  78. 78.
    Neu HC. The effects of cations upon the activity of quinolone agents. Quinolones Bull April 1985:1.Google Scholar
  79. 79.
    Bauernfeind A, Petermüller C, Danninger J. Selection of mutants with increased MIC by pefloxacin, ofloxacin, norfloxacin and ciprofloxacin inP. aeruginosa. In ref. 151:36–44.Google Scholar
  80. 80.
    Sanders CS, Sanders WE, Goering RV, Werner V. Selection of multiple antibiotic resistance by quinolones, β-lactams and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 1984;26:797–801.Google Scholar
  81. 81.
    Crook SM, Selkon JB, McLardy Smith PD. Clinical resistance to long-term oral ciprofloxacin. Lancet 1985;1:1275.Google Scholar
  82. 82.
    Smith JT. Mutational resistance to 4-quinolone antibacterial agents. Eur J Clin Microbiol 1984;3:347–50.Google Scholar
  83. 83.
    Chapman ST, Speller DC, Reeves DS. Resistance to ciprofloxacin. Lancet 1985;2:39.Google Scholar
  84. 84.
    Abstracts of the 25th Interscience Conference on Antimicrobial Agents and Chemotherapy, Minneapolis, September 29-October 2, 1985. Washington DC: American Society for Microbiology, 1985.Google Scholar
  85. 85.
    Brumfitt W, Franklin J, Grady D, Hamilton-Miller JM, Iliffe A. Changes in the pharmacokinetics of ciprofloxacin and fecal flora during administration of a 7-day course to human volunteers. Antimicrob Agents Chemother 1984;26:757–61.Google Scholar
  86. 86.
    Gonzalex MA, Uribe F, Moisen SD, et al. Multiple-dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. J Antimicrob Chemother 1984;26:741–4.Google Scholar
  87. 87.
    Aronoff GE, Kenner GH, Sloan RS, Pottratz ST. Multiple-dose ciprofloxacin kinetics in normal subjects. Clin Pharmacol Ther 1984;36:384–8.Google Scholar
  88. 88.
    Wise R, Lockley RM, Webberly M, Dent J. Pharmacokinetics of intravenously administered ciprofloxacin. Antimicrob Agents Chemother 1984;26:208–10.Google Scholar
  89. 89.
    Höffler D, Dalhoff A, Gau W, Beermann D, Michl A. Dose- and sex-independent disposition of ciprofloxacin. Eur J Clin Microbiol 1984;3:363–6.Google Scholar
  90. 90.
    Wingender W, Graefe KH, Gau W, Förster D, Beermann D, Schacht P. Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. Eur J Clin Pharmacol 1984;3:355–9.Google Scholar
  91. 91.
    Crump B, Wise R, Dent J. Pharmacokinetics and tissue penetration of ciprofloxacin. Antimicrob Agents Chemother 1983;24:784–6.Google Scholar
  92. 92.
    Ledergerber B, Bettex JD, Joos B. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother 1985;27:350–2.Google Scholar
  93. 93.
    Höffler G, Lode H, Prinzing C. Pharmacokinetics of ciprofloxacin after oral and parenteral administration. Antimicrob Agents Chemother 1985;27:375–9.Google Scholar
  94. 94.
    Höffler G, Lode H, Prinzing C. Pharmakokinetik von Ciprofloxacin. Klin Wochenschr 1985;63(suppl 4):365.Google Scholar
  95. 95.
    Adhami ZN, Wise R, Weston D, Crump B. The pharmacokinetics and tissue penetration of norfloxacin. J Antimicrob Chemother 1984;13:87–92.Google Scholar
  96. 96.
    Hughes PJ, Webb DB, Asscher AW. Pharmacokinetics of norfloxacin in patients with impaired kidney function — some preliminary results. J Antimicrob Chemother 1984;13(suppl B):55–7.Google Scholar
  97. 97.
    Fillastre JP, Hannedouche T, Leroy A. Pharmacokinetics of norfloxacin in renal failure. J Antimicrob Chemother 1984;14:439.Google Scholar
  98. 98.
    Wolff M, Regnier B, Daldoss C, Nkam M, Vachon F. Penetration of pefloxacin into CSF of patients with meningitis. Antimicrob Agents Chemother 1984;26:289–91.Google Scholar
  99. 99.
    Montay G, Goueffon Y, Roquet F. Absorption, distribution, metabolic fate and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys and humans. Antimicrob Agents Chemother 1984;25:463–72.Google Scholar
  100. 100.
    Gaillot J, Frydman A, LeRoux Y, et al. Pharmacokinetics of pefloxacin in man during a repeated treatment with intravenous infusion. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-5.Google Scholar
  101. 101.
    Barre J, Houin G, Tillement JP. Dose-dependent pharmacokinetic study of pefloxacin, a new antibacterial agent, in humans. J Pharm Sci 1984;73:1379–82.Google Scholar
  102. 102.
    Lockley MR, Wise R, Dent J. The pharmacokinetics and tissue penetration of ofloxacin. J Antimicrob Chemother 1984;14:647–52.Google Scholar
  103. 103.
    Katsu M, Saito A. An overview of experimental and clinical results in Japan with ofloxacin, a unique new antibacterial agent. In ref. 133:5–7.Google Scholar
  104. 104.
    Nakano H, Nihira H, Kamiya A, Hori R. Influence of renal impairment on multiple-dose pharmacokinetics of ofloxacin. In ref. 151:63–8.Google Scholar
  105. 105.
    Wise R, Lockley R, Webberly M, et al. The pharmacokinetics and tissue penetration of enoxacin and norfloxacin. J Antimicrob Chemother 1984;14(suppl C):75–81.Google Scholar
  106. 106.
    Brogard JM, Jehl F, Arnaund JP, et al. Ciprofloxacine: évaluation de son élimination biliaire chez l'homme. Schweiz Med Wochenschr 1985;115:448–53.Google Scholar
  107. 107.
    Boerema JB, Dalhoff A, Debruyne FM. Ciprofloxacin distribution in prostatic tissue and fluid following oral administration. Chemotherapy 1985;31:13–8.Google Scholar
  108. 108.
    Hoogkamp-Kostanje JA, Van Oort HJ, Schipper JJ, Van der Wal T. Intraprostatic concentration of ciprofloxacin and its activity against urinary pathogens. J Antimicrob Chemother 1984;14:641–5.Google Scholar
  109. 109.
    Boerema JB, Debruyne FM, Dalhoff A. Intraprostatic concentrations of ciprofloxacin after intravenous administration. Lancet 1984;2:695–6.Google Scholar
  110. 110.
    Höffken G, Borner K, Glatzel PD. Reduced enteral absorption of ciprofloxacin in the presence of antacids. Eur J Clin Microbiol 1984;4:345.Google Scholar
  111. 111.
    Pangon B. Gehanno P, Daldoss C, et al. Tissue diffusion of pefloxacin, study in man. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-7.Google Scholar
  112. 112.
    Morel C, Vergnaud M. Langeard MM, et al. Peflox-acin-diffusion into the bronchial mucus. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-8.Google Scholar
  113. 113.
    Bergogne-Berezin E. Pharmacokinetic parameters of quinolones in respiratory tract infections. Quinolones Bull 1985;1:17–9.Google Scholar
  114. 114.
    Abstracts of the 2nd European Congress of Clinical Microbiology, Brighton, September 1–5, 1985. Brighton: European Society of Clinical Microbiology, 1985.Google Scholar
  115. 115.
    Wolf R, Eberl R, Dunky A, et al. The clinical pharmacokinetics and tolerance of enoxacin in healthy volunteers. J Antimicrob Chemother 1984;14(suppl C):63–9.Google Scholar
  116. 116.
    Wijnands WJ, Van Herwaarden CL, Vree TB. Enoxacin raises plasma theophylline concentrations. Lancet 1984;2:108–9.Google Scholar
  117. 117.
    Maessen FP, Teengs JP, Baur C, et al. Quinolones and raised plasma concentrations of theophylline. Lancet 1984;2:530.Google Scholar
  118. 118.
    Ohno H, Inage F, Akahane K, et al. Acute toxicity study of ofloxacin, a new synthetic antibacterial agent, in mice, rats, dogs and monkeys. In ref. 133:123.Google Scholar
  119. 119.
    Kato M, Ohno H, Yoshida M, et al. Twenty-six weeks chronic oral toxicity of ofloxacin, a new synthetic antibacterial agent, in rats. In ref. 133:125–6.Google Scholar
  120. 120.
    Furuhama K, Akahane K, Kato M, et al. Ten-day oral nephrotoxicity study of ofloxacin in rabbits. In ref. 133:126.Google Scholar
  121. 121.
    Kojima H, Hirohashi M, Sakurai T, et al. General pharmacology of ofloxacin. In ref. 133:127–8.Google Scholar
  122. 122.
    Shimada H, Ebine Y, Kurosawa Y, et al. Mutagenicity studies of ofloxacin, a new antibacterial drug. In ref. 133:128–9.Google Scholar
  123. 123.
    Norden CW, Shinners E. Ciprofloxacin as therapy for experimental osteomyelitis caused byP. aeruginosa. J Infect Dis 1985;151:291–4.Google Scholar
  124. 124.
    Boscia JA, Kobasa WD, Kaye D. Oral enoxacin vs parenteral cefoperazone in the treatment of experimental endocarditis. Res Clin Forums 1985;7:55–61.Google Scholar
  125. 125.
    Strunk RW, Gratz JC, Maserati R, Scheid WM. Comparison of ciprofloxacin with azlocillin plus tobramycin in the therapy of experimentalP. aeruginosa endocarditis. Antimicrob Agents Chemother 1985;28:428–32.Google Scholar
  126. 126.
    Katsu M, Saito A. An overview of experimental and clinical result in Japan with ofloxacin, a unique new antibacterial agent. In ref. 133:8–9.Google Scholar
  127. 127.
    Modak S, Stanford J, Friedländer J, et al. Control of burnwound infections by pefloxacin and its silver derivative. Burns 1983;10:170–8.Google Scholar
  128. 128.
    Matsuda S, Kashiwagura T, Kokuho K, et al. Experimental and clinical studies of ofloxacin in the fields of obstetrics and gynaecology. In ref. 133:94.Google Scholar
  129. 129.
    Cho N, Koh Y, Hara Y, et al. Fundamental and clinical evaluation of ofloxacin in the obstetric and gynaecological fields. In ref. 133:95.Google Scholar
  130. 130.
    Seki K, Hagashi S. Clinical experience of ofloxacin. In ref. 133:96.Google Scholar
  131. 131.
    Shah PM, Frech K. Clinical experience with quinolones-overview. Quinolones Bull 1985;1:19–22.Google Scholar
  132. 132.
    Ramirez CA, Bran JL, Mejia CR, Garcia JF. Open prospective study of the clinical efficacy of ciprofloxacin. Antimicrob Agents Chemother 1985;28:128–32.Google Scholar
  133. 133.
    Anonymous. Ofloxacin, broad spectrum antibacterial agent Tokyo: Excerpta Medica, 1984:7–8, 81–2, 108–12, 114–5.Google Scholar
  134. 134.
    Wolff M., Vittecoq D., Regnier B, et al. Preliminary trial of pefloxacin in the treatment of urinary tract infections and in seriously ill patients treated in hospital. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-14.Google Scholar
  135. 135.
    Benard Y, Lemenager J, Morel C. Biochemical evaluation of pefloxacin in infectious bronchopulmonary disease. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-9.Google Scholar
  136. 136.
    Shah PM. Ciprofloxacin in the treatment of cystic fibrosis. Quinolones Bull October 1984:1.Google Scholar
  137. 137.
    Michalsen H, Stiris T, Bergan T. Peroral ciprofloxacin in the treatment of infection withPs. aeruginosa in patients with CF. 13th Annual Meeting of the European Working Group for CF, Jerusalem, 1985. Jerusalem: European Working Group for CF, 1985: Abstract 125.Google Scholar
  138. 138.
    Deaney NB. Vogel R, Vandenburg MJ, et al. Norfloxacin in acute urinary tract infection. Practitioner 1984;228:111–7.Google Scholar
  139. 139.
    Vogel R, Deaney NB, Round EM, et al. Norfloxacin, amoxycillin, co-trimoxazole and nalidixic acid. A summary of 3-day and 7-day therapy studies in the treatment of UTI. J Antimicrob Chemother 1984;13(suppl B):113–20.Google Scholar
  140. 140.
    Leigh DA, Emmanuel FX. The treatment ofPs. aeruginosa UTI with norfloxacin. J Antimicrob Chemother 1984;13(suppl B):85–8.Google Scholar
  141. 141.
    Haase DA, Harding GK, Thomson MJ, et al. Comparative trial of norfloxacin and co-trimoxazole in the treatment of women with localized, acute, symptomatic UTI and antimicrobial effect on periurethral and fecal microflora. Antimicrob Agents Chemother 1984;26:481–4.Google Scholar
  142. 142.
    Leigh DA, Smith EC, Marriner J. Comparative study using norfloxacin and amoxycillin in the treatment of complicated UTI in geriatric patients. J Antimicrob Chemother 1984;13(suppl B):79–83.Google Scholar
  143. 143.
    Watt B, Chait I, Kelsey MC, et al. Norfloxacin vs CTX in the treatment of uncomplicated UTI — a multi-centre trial. J Antimicrob Chemother 1984;13(suppl B):89–94.Google Scholar
  144. 144.
    Boerema J, Boll B, Muytjens H. et al. Efficacy and safety of ciprofloxacin in the treatment of patients with complicated UTI. J Antimicrob Chemother 1985;16:211–7.Google Scholar
  145. 145.
    Garrel JB, Thabaut A, Grossetète G, et al. Efficacy and safety of pefloxacin in male gonococcal urethritis. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-10.Google Scholar
  146. 146.
    Guibert J, Boutelier R. Pefloxacin: clinical assessment in UTI. In: Spitzky KH, Karrer K, eds. Proceedings of the 13th International Congress of Chemotherapy, Vienna 1983. Vienna: Egermann, 1983: Abstract PS 4.6/4-12.Google Scholar
  147. 147.
    Rozenberg-Arska K, Dekker AW, Verhoef J. Ciprofloxacin for selective decontamination of the alimentary tract in patients with acute leukemia during remission induction treatment. J Infect Dis 1985;152:104–7.Google Scholar
  148. 148.
    Nord CE, Delin C, Bergan T, Johansen S. Kolstad IM, Thorsteinsson SB. The effect of ciprofloxacin on otopharyngeal and colon microflora. Res Clin Forums 1985;7:89–95.Google Scholar
  149. 149.
    Ishigama J. Discussion. Res Clin Forums 1985;7:107–13.Google Scholar
  150. 150.
    Eliopoulos GM, Moellering AE, Reiszner E, Moellering RC.In vitro activities of the quinolone antimicrobial agents A56619 and A56620. Antimicrob Agents Chemother 1985;28:514–20.Google Scholar
  151. 151.
    Anonymous. Ofloxacin, broad spectrum antibacterial agent. Proceedings from the 24th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington DC, October 8–10 1984. Tokyo: Excerpta Medica, 1985.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1986

Authors and Affiliations

  • R. Janknegt
    • 1
  1. 1.Department of Clinical PharmacyHA AlkmaarThe Netherlands

Personalised recommendations