Advertisement

Pharmaceutisch Weekblad

, Volume 13, Issue 2, pp 74–77 | Cite as

Biotechnology and biosynthesis of quinones

  • Albert J. J. Van den Berg
Reviews
  • 96 Downloads

Abstract

Nowadays, it is generally agreed that intensive investigation of biosynthetic pathways is a prerequisite for attaining industrial-scale production of secondary metabolites (e.g. quinones) by plant cell cultures. Literature data are presented to illustrate different aspects of today's quinone biosynthesis research.

Keywords

Biosynthesis Quinones Technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomson RH. Naturally occurring quinones. III. London: Chapman and Hall, 1987.Google Scholar
  2. 2.
    Van den Berg AJJ, Labadie RP. Quinones. In: Dey PM, Harborne JB, eds. Methods in plant biochemistry. Vol. 1. London: Academic Press, 1989:451–91.Google Scholar
  3. 3.
    Kitanaka S, Igarashi H, Takido M. Formation of pigments by the tissue culture ofCassia occidentalis. Chem Pharm Bull 1985;33:971–4.Google Scholar
  4. 4.
    Inouye H, Matsumura H, Kawasaki M, Inoue K, Tsukada M, Tabata M. Two quinones from callus cultures ofEchium lycopsis. Phytochemistry 1981;20:1701–5.CrossRefGoogle Scholar
  5. 5.
    Yazaki K, Fukui H, Tabata M. Dihydroshikonofuran, an unusual metabolite of quinone biosynthesis inLithospermum cell cultures. Chem Pharm Bull 1987;35:898–901.Google Scholar
  6. 6.
    Curtin ME. Harvesting profitable products from plant tissue culture. Biotechnology 1983;1:649–57.CrossRefGoogle Scholar
  7. 7.
    Stöckigt J, Schübel H. Naturstoffe aus pflanzlichen Zellkulturen. Dtsch Apoth Ztg 1989;129:1187–92.Google Scholar
  8. 8.
    Khouri HE, Ibrahim RK. Purification and some properties of five anthraquinone-specific glucosyl-transferases fromCinchona succirubra cell suspension culture. Phytochemistry 1987;26:2531–5.CrossRefGoogle Scholar
  9. 9.
    Mann J. Secondary metabolism. Oxford: Oxford University Press, 1978:1–77.Google Scholar
  10. 10.
    Vickery ML, Vickery B. Secondary plant metabolism. London: MacMillan Press, 1981:56–111.Google Scholar
  11. 11.
    Van den Berg AJJ, Radema MH, Labadie RP. Effects of light on anthraquinone production inRhamnus purshiana suspension cultures. Phytochemistry 1988;27:415–7.CrossRefGoogle Scholar
  12. 12.
    Häggblom P. Light effects on polyketide and lipid metabolism inAlternaria alternata. Int Bot Congr Abstr 1987;17:174.Google Scholar
  13. 13.
    Mosbach K, Bävertoft I. A comparative study on the biosynthesis of palmitic and orsellinic acids inPenicillium baarnense. Acta Chem Scand 1971;25:1931–6.PubMedGoogle Scholar
  14. 14.
    Orvehed M, Häggblom P, Söderhäll K. Activity of NADPH-generating pathways in relation to polyketide synthesis in the fungusAlternaria alternata. Exp Mycol 1987;11:187–96.Google Scholar
  15. 15.
    Gstraunthaler GJA. The effect of cerulenin on fatty acid and anthraquinone biosynthesis in vegetative mycelia ofCortinarius orichalceus Fr. Biochim Biophys Acta 1983;750:424–7.Google Scholar
  16. 16.
    Omura S. Philosophy of new drug discovery. Microbiol Rev 1986;50:259–79.PubMedGoogle Scholar
  17. 17.
    Dusek J, Sicha J, Duskova J. Influence on the production of anthracene derivatives in the tissue culture ofRheum palmatum by a modification of the cultivating medium, or potential precursors. Cesk Farm 1989;38:210–3.Google Scholar
  18. 18.
    Van den Berg AJJ, Radema MH, Labadie RP. Influence of acetate and malonate on the production of 1,8-dihydroxyanthracene derivatives in suspension cultures ofRhamnus purshiana. Planta 1988;174:417–21.CrossRefGoogle Scholar
  19. 19.
    Yagi A, Shoyama Y, Nishioka I. Formation of tetrahydroanthracene glucosides by callus tissue ofAloe saponaria. Phytochemistry 1983;22:1483–4.CrossRefGoogle Scholar
  20. 20.
    Grün M, Franz G.In vitro biosynthesis of the C-glycosidic bond in aloin. Planta 1981;152:562–4.CrossRefGoogle Scholar
  21. 21.
    Grün M, Franz G. Untersuchungen zur Biosynthese der Aloine inAloe arborescens Mill. Arch Pharm 1982;315:231–41.Google Scholar
  22. 22.
    Simantiras M, Leistner E. Formation ofo-succinylbenzoic acid from iso-chorismic acid in protein extracts from anthraquinone-producing plant cell suspension cultures. Phytochemistry 1989;28:1381–2.CrossRefGoogle Scholar
  23. 23.
    Inouye H, Ueda S, Inoue K, Shiobara Y. (2R)-Catalponone, a biosynthetic intermediate for prenylnaphthoquinone congeners of the wood ofCatalpa ovata. Phytochemistry 1981;20:1707–10.CrossRefGoogle Scholar
  24. 24.
    Inoue K, Ueda S, Nayeshiro H, Inouye H. Quinones fromStreptocarpus dunnii. Phytochemistry 1983;22:737–41.CrossRefGoogle Scholar
  25. 25.
    Inoue K, Ueda S, Nayeshiro H, Moritome N, Inouye H. Biosynthesis of naphthoquinones and anthraquinones inStreptocarpus dunnii cell cultures. Phytochemistry 1984;23:313–8.Google Scholar
  26. 26.
    Mulder-Krieger Th, Verpoorte R, De Water A, Van Gessel M, Van Oeveren BCJA, Baerheim Svendsen A. Identification of the alkaloids and anthraquinones inCinchona ledgeriana callus cultures. Planta Med 1982;46:19–24.Google Scholar
  27. 27.
    Wijnsma R, Van Weerden IN, Verpoorte R, et al. Anthraquinones inCinchona ledgeriana bark infected withPhytophthora cinnamomi. Planta Med 1986;52:211–2.Google Scholar
  28. 28.
    Wijnsma R, Go JTKA, Van Weerden IN, Harkes PAA, Verpoorte R, Baerheim Svendsen A. Anthraquinones as phytoalexins in cell and tissue cultures ofCinchona spec. Plant Cell Rep 1985;4:241–4.CrossRefGoogle Scholar
  29. 29.
    Igbavboa U, Sieweke HJ, Leistner E, Röwer I, Hüsemann W, Barz W. Alternative formation of anthraquinones and lipoquinones in heterotrophic and photoautotrophic cell suspension cultures ofMorinda lucida Benth. Planta 1985;166:537–44.CrossRefGoogle Scholar
  30. 30.
    El-Shagi H, Shulte U, Zenk MH. Specific inhibition of anthraquinone formation by amino compounds inMorinda cell cultures. Naturwissenschaften 1984;71:267.CrossRefGoogle Scholar
  31. 31.
    Inouye H, Ueda S, Inoue K, Matsumura H. Biosynthesis of shikonin in callus cultures ofLithospermum erythrorhizon. Phytochemistry 1979;18:1301–8.CrossRefGoogle Scholar
  32. 32.
    Fukui H, Tsukada M, Mizukami H, Tabata M. Formation of stereoisomeric mixtures of naphthoquinone derivatives inEchium lycopsis callus cultures. Phytochemistry 1983;22:453–6.CrossRefGoogle Scholar
  33. 33.
    Fukui H, Yoshikawa N, Tabata M. Induction of benzoquinone formation by activated carbon inLithospermum erythrorhizon cell suspension cultures. Phytochemistry 1984;23:301–5.CrossRefGoogle Scholar
  34. 34.
    Heide L, Nishioka N, Fukui H, Tabata M. Enzymatic regulation of shikonin biosynthesis inLithospermum erythrorhizon cell cultures. Phytochemistry 1989;28:1873–7.CrossRefGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1991

Authors and Affiliations

  • Albert J. J. Van den Berg
    • 1
  1. 1.Division of PharmacognosyUtrecht UniversityTB Utrechtthe Netherlands

Personalised recommendations