Pharmaceutisch Weekblad

, Volume 14, Issue 6, pp 338–348 | Cite as

Drug transport across the blood — brain barrier

II. Experimental techniques to study drug transport
  • J. B. M. M. Van Bree
  • A. G. De Boer
  • M. Danhof
  • D. D. Breimer


This is part II of a review on the transport of drugs across the blood-brain barrier. In this part, the emphasis is on the various experimental techniques that can be used to characterize the blood — brain barrier transport of drugs. Generally speaking, three approaches can be distinguished:in vitro techniques using isolated brain capillaries, cerebrovascular endothelial cells in primary culture or endothelium-derived cell lines;in vivo techniques (both single-passage and multi-passage techniques) andin situ perfusion techniques. Each of these techniques has specific advantages and disadvantages associated with it. Therefore, in many instances, a combination of different approaches is needed to study the fundamental aspects of drug transport across the blood-brain barrier.


Biological transport Blood — brain barrier Cell membrane permeability Cerebrospinal fluid Methods Research 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Bree JBMM, De Boer AG, Danhof M, Breimer DD. Drug transport across the blood—brain barrier. I. Anatomical and physiological aspects. Pharm Weekbl [Sci] 1992;14(5):305–10.Google Scholar
  2. 2.
    Siakotos AN, Rouser G, Fleischer S. Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids 1969;4:234–9.PubMedGoogle Scholar
  3. 3.
    Brendel K, Meezan E, Carlson EC. Isolated brain microvessels. A purified metabolically active preparation from bovine cerebral cortex. Science 1974;185:953–5.PubMedGoogle Scholar
  4. 4.
    Meresse S, Dehouck M-P, Delorme P, Bensaid M, Tauber J-P, Delbart C, et al. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 1989;53(5):1363–71.PubMedGoogle Scholar
  5. 5.
    Goldstein GW, Wolinski JS, Csejtey J, Diamond I. Isolation of metabolically active capillaries from rat brain. J Neurochem 1975;25:715–17.PubMedGoogle Scholar
  6. 6.
    Panula P, Joo F, Rechardt L. Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 1978;34:95–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Hjelle JT, Baird-Lambert J, Cardinale G, Spector S, Udenfried S. Isolated microvessels the blood—brain barrierin vitro. Proc Natl Acad Sci USA 1978;75:4544–8.PubMedGoogle Scholar
  8. 8.
    De Bault LE, Kahn LE, Frommes SP, Cancilla PA. Cerebral microvessels and derived cells in tissue culture. Isolation and preliminary characterisation. In Vitro 1979;15:473–87.PubMedGoogle Scholar
  9. 9.
    Williams SK, Gillis JF, Matthews MA, Wagner RC, Bitenski MW. Isolation and characterization of brain endothelial cells. Morphology and enzyme activity. J Neurochem 1980;35:374–81.PubMedGoogle Scholar
  10. 10.
    Phillips P, Kumar P, Kumar S, Waghe M. Isolation and characterization of endothelial cells from rat and cow brain white matter. J Anat 1979;129:261–72.PubMedGoogle Scholar
  11. 11.
    Spatz M, Bembry J, Dodson RF, Hervonen H, Murray MR. Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res 1980;191:577–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Bowman PD, Betz AL, Ar D, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW. Primary culture of capillary endothelium from rat brain. In Vitro 1981;17:353–62.PubMedGoogle Scholar
  13. 13.
    Bowman PD, Betz AL, Goldstein GW. Primary culture of microvascular endothelial cells from bovine retina. Selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 1982;18:626–32.PubMedGoogle Scholar
  14. 14.
    Diglio CA, Grammas P, Giacomelli F, Wiener J. Primary culture of rat cerebral microvascular endothelial cells. Lab Invest 1982;46:554–63.PubMedGoogle Scholar
  15. 15.
    Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture. A model for study of blood—brain barrier permeability. Ann Neurol 1983;14:396–402.CrossRefPubMedGoogle Scholar
  16. 16.
    Audus KL, Borchardt RT. Characterization of anin vitro blood—brain barrier model system for studying drug transport and metabolism. Pharm Res 1986;3:81–7.CrossRefGoogle Scholar
  17. 17.
    Rim S, Audus KL, Borchardt RT. Relationship of octanol/buffer and octanol/water partition coefficients to transcellular diffusion across brain microvessel endothelial cell monolayers. Int J Pharm 1986;32:79–84.CrossRefGoogle Scholar
  18. 18.
    Bottaro D, Shepro D, Hechtman HB. Heterogeneity of intimal and microvessel endothelial cell barriersin vitro. Microvasc Res 1986;32:389–98.CrossRefPubMedGoogle Scholar
  19. 19.
    Kempski O, Villacara A, Spatz M, Dodson RF, Corn C, Merkel N, et al. Cerebrovascular endothelial permeability.In vitro studies. Acta Neuropathol 1987;74:329–34.CrossRefPubMedGoogle Scholar
  20. 20.
    DeBault LE, Henriquez E, Hart MN, Cancilla PA. Cerebral microvessels and derived cells in tissue culture. II. Establishment, identification and preliminary characterization of an endothelial cell line. In Vitro 1981;17:480–94.PubMedGoogle Scholar
  21. 21.
    Caspers ML, Diglio CA. Expression of gamma-glutamyl transpeptidase in a transformed rat cerebral endothelial cell line. Biochim Biophys Acta 1984;803:1–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Soric J, Gordon JA. Vanadate stimulates the pp60v-src tyrosine kinase activity in intact transformed rat cerebral endothelial cells. Period Biol 1988;90:413–9.Google Scholar
  23. 23.
    Tonsch U, Bauer HC. Isolation, characterization and long-term cultivation of porcine and murine cerebral capillary endothelial cells. Microvasc Res 1989;37:148–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Minakawa T. Long-term culture of microvascular endothelial cells derived from mongolian gerbil brain. Stroke 1989;20:947–51.PubMedGoogle Scholar
  25. 25.
    Hennig B, Boissonneault GA, Glauert HP. Effects of serum type on growth and permeability properties of cultured endothelial cells. Exp Cell Res 1989;181:589–96.CrossRefPubMedGoogle Scholar
  26. 26.
    Robinson RA, Teneyck CJ, Hart MN. Growth control in cerebral microvessel-derived endothelial cells. Brain Res 1986;384:114–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Tao-Cheng JH, Nagy Z, Brightman MW. Tight junctions of brain endotheliumin vitro are enhanced by astrocytes. J Neurosci 1987;7:3293–9.PubMedGoogle Scholar
  28. 28.
    Betz AL, Goldstein GW. Polarity of the blood—brain barrier. Neutral amino acid transport into isolated brain capillaries. Science 1978;202:225–7.PubMedGoogle Scholar
  29. 29.
    Betz AL, Firth JA, Goldstein GW. Polarity of the blood—brain barrier. Distribution of enzymes between the luminal and the abluminal membranes of brain capillary endothelial cells. Brain Res 1980;192:17–28.CrossRefPubMedGoogle Scholar
  30. 30.
    Pardridge WM, Mietus LJ. Enkephalin and the blood—brain barrier. Studies of binding and degradation in isolated brain capillaries. Endocrinology 1981;109:1138–42.PubMedGoogle Scholar
  31. 31.
    Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective function of the blood—brain barrier. Activities of four drug-metabolizing enzymes in isolated rat brain. Life Sci 1988;42:2515–23.CrossRefPubMedGoogle Scholar
  32. 32.
    White FP, Dutton GR, Norenberg MD. Microvessels isolated from rat brain. Localization of astrocyte processes by immunohistochemical techniques. J Neurochem 1981;36:328–32.PubMedGoogle Scholar
  33. 33.
    Lidinski WA, Drewes LR. Characterization of the blood—brain barrier. Protein composition of the capillary endothelial cell membrane. J Neurochem 1983;41:1341–8.PubMedGoogle Scholar
  34. 34.
    Baranczyk-Kuzma A, Audus KL, Borchardt RT. Catecholamine-metabolizing enzymes of bovine brain microvessel endothelial cell monolayers. J Neurochem 1986;46:1956–60.PubMedGoogle Scholar
  35. 35.
    Van Bree JBMM, Audus KL, Borchardt RT. Carriermediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm Res 1988;5:369–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Olson JJ, Poor MM, Beck DW. Methylprednisolone reduces the bulk flow of water across anin vitro blood—brain barrier. Brain Res 1988;439:259–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Audus KL, Shinogle JA, Guillot FL, Holthaus SR. Aluminum effects the brain microvessel endothelial cell monolayer permeability. Int J Pharm 1988;45:249–57.CrossRefGoogle Scholar
  38. 38.
    Villacara A, Spatz M, Dodson RF, Corn C, Bembry J. Effect of arachidonic acid on cultured cerebromicrovascular endothelium. Permeability, lipid peroxidation and membrane fluidity. Acta Neuropathol 1989;78:310–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Crone C. The permeability of capillaries in various organs as determined by the use of the indicator dilution method. Acta Physiol Scand 1963;58:292–305.PubMedGoogle Scholar
  40. 40.
    Rapoport SJ. Permeability and osmotic properties of the blood—brain barrier. In: Rapoport SJ, ed. Blood— brain barrier in physiology and medicine. New York: Raven Press, 1976:87.Google Scholar
  41. 41.
    Hertz MM, Paulson OB. Heterogeneity of cerebral capillary flow in man and its consequences for estimation of blood—brain barrier permeability. J Clin Invest 1980;65:1145–51.PubMedGoogle Scholar
  42. 42.
    Sawada Y, Patlak CS, Blasberg RG. Kinetic analysis of cerebrovascular transport based on indicator diffusion technique. Am J Physiol 1989;256:H794–812.PubMedGoogle Scholar
  43. 43.
    Oldendorf WH. Measurement of radiolabelled substances using a tritiated water internal standard. Brain Res 1970;24:372–6.PubMedGoogle Scholar
  44. 44.
    Bradbury MWB, Patlak CS, Oldendorf WH. Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am J Physiol 1975;229:1110–5.PubMedGoogle Scholar
  45. 45.
    Fenstermacher JD, Blasberg RG, Patlak CS. Methods for quantifying the transport of drugs across the blood—brain systems. Pharmacol Ther 1981;14:217–48.CrossRefPubMedGoogle Scholar
  46. 46.
    Kastin AJ, Zadina JE, Banks WA, Graf MV. Misleading concepts in the field of brain peptides. Peptides 1984;5:249–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Smith QR. Quantitation of blood—brain barrier permeability. In: Neuwelt EA, ed. Implications of the blood—brain barrier and its manipulation. Vol. 1. Basic science aspects. New York: Plenum Press, 1989:85–118.Google Scholar
  48. 48.
    Rapoport SI, Ohno K, Pettigrew KD. Drug entry into the brain. Brain Res 1979;172:354–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Preston E, Haas N. Defining the lower limits for blood—brain barrier permeability. Factors affecting the magnitude and interpretation of permeability-area products. J Neurosci Res 1986;16:709–19.CrossRefPubMedGoogle Scholar
  50. 50.
    Brodie BB, Kurz H, Shanker LS. The importance of dissociation constant and lipid solubility in influencing the passage of drugs into the central nervous system. J Pharmacol Exp Ther 1960;130:519–28.Google Scholar
  51. 51.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphic evaluation of blood to brain transfer constants from multiple time uptake data. J Cerebral Blood Flow Metab 1983;3:1–7.Google Scholar
  52. 52.
    Crone C, Levitt DG. Capillary permeability to small solutes. In: Renkin EM, Michel CC, eds. Handbook of physiology. Vol. 4. Part 1. Bethesda: American Physiological Society, 1984:411–66.Google Scholar
  53. 53.
    Patlak CS, Blasberg RG. Graphic evaluation of blood to brain transfer constants from multiple time uptake data: generalizations. J Cerebral Blood Flow Metab 1985;5:584–90.Google Scholar
  54. 54.
    Van Bree JBMM, Baljet AV, Van Geyt A, De Boer AG, Danhof M, Breimer DD. The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. J Pharmacokinet Biopharm 1989;17:441–62.CrossRefPubMedGoogle Scholar
  55. 55.
    Takasato Y, Rapoport SI, Smith QR. Anin situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 1984;247:H484–93.PubMedGoogle Scholar
  56. 56.
    Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM. Measurement of solute transport in the perfused guinea pig brain. Method application toN-methyl-α-aminoisobutyric acid. J Neurochem 1986;46:1444–51.PubMedGoogle Scholar
  57. 57.
    Risau W, Dingler A, Albrecht U, Dehouck M-P, Cecchelli R. Blood — brain barrier pericytes are the main source ofγ-glutamyl transpeptidase activity in brain capillaries. J Neurochem 1992;58:667–72.PubMedGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1992

Authors and Affiliations

  • J. B. M. M. Van Bree
    • 1
  • A. G. De Boer
    • 1
  • M. Danhof
    • 1
  • D. D. Breimer
    • 1
  1. 1.Centre for Bio-Pharmaceutical Sciences, Division of PharmacologyLeiden University, Sylvius LaboratoriesRA Leidenthe Netherlands

Personalised recommendations