Pharmaceutisch Weekblad

, Volume 10, Issue 1, pp 1–11 | Cite as

Chromatographic separation of enantiomers

  • Karla G. Feitsma
  • Ben F. H. Drenth
Review Articles


In this paper a review is presented on the chromatographic analysis of enantiomers with special attention to high pressure liquid chromatography. Also, some examples of resolution of racemates by thin layer chromatography and gas chromatography are given. The various procedures in the surveyed literature have been divided into three main classes: procedures with formation of diastereomeric compounds prior to the chromatographic separation, procedures in which a chiral mobile phase is used, and procedures with the use of a chiral stationary phase. These methods are subdivided and some examples of their application to drugs and related compounds are presented.

Key words

Chemistry, analytical Chromatography, gas Chromatography, high pressure liquid Chromatography, thin layer Enantiomers Separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ariëns EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 1984;26:663–8.PubMedGoogle Scholar
  2. 2.
    Jacques J, Collet A, Wilen SH. Enantiomers, racemates and resolutions. New York: John Wiley & Sons, 1981.Google Scholar
  3. 3.
    Günther K, Schickedanz M, Drauz K, Martens J. Thin-layer chromatographic enantiomeric resolution of α-alkyl amino acids. Fresenius Z Anal Chem 1986;325:298–9.CrossRefGoogle Scholar
  4. 4.
    Alak A, Armstrong DW. Thin-layer chromatographic separation of optical, geometrical and structural isomers. Anal Chem 1986;58:582–4.CrossRefGoogle Scholar
  5. 5.
    Martens J, Günther K, Schickedanz M. Enantiomeric purity ofd-penicillamine. Arch Pharm 1986;319:461–5.Google Scholar
  6. 6.
    Schurig V. Current methods for determination of enantiomeric compositions (part 3). Gas chromatography on chiral stationary phases. Kontakte (Darmstadt) 1986:3–22.Google Scholar
  7. 7.
    Wedlund PJ, Sweetman BJ, McAllister CB, Branch RA, Wilkinson GR. Direct enantiomeric resolution of mephenytoin and itsN-demethylated metabolite in plasma and blood using chiral capillary gas chromatography. J Chromatogr 1984;307:121–7.PubMedGoogle Scholar
  8. 8.
    Antonsson A-M, Gyllenhaal O, Kylberg-Hanssen K, Johansson L, Vessman J. Monitoring ofS- andR- tocainide in human plasma after heptafluorobutyrylation, separation on Chirasil-Val® and electron-capture detection. J Chromatogr 1984;308:181 -7.PubMedGoogle Scholar
  9. 9.
    Koppenhoefer B, Bayer E. Chiral recognition in the resolution of enantiomers by GLC. Chromatographia 1984;19:123–30.Google Scholar
  10. 10.
    König WA, Ernst K. Application of enantioselective capillary gas chromatography to the analysis of chiral pharmaceuticals. J Chromatogr 1983;280:135–41.CrossRefGoogle Scholar
  11. 11.
    Koscielski T, Sybilska D, Jurczak J. New chromatographic method for the determination of the enantiomeric purity of terpenoic hydrocarbons. J Chromatogr 1986;364:299–303.CrossRefGoogle Scholar
  12. 12.
    Scott BS, Dunn DL. High-performance liquid chromatographic analysis of epinephrine enantiomers using a UV detector in series with an optical activity detector. J Chromatogr 1985;319:419–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Coleman MW. Determination of the enantiomeric purity of oxfenicine by high-performance liquid chromatography. Chromatographia 1983;17:23–6.Google Scholar
  14. 14.
    Weber H, Spahn H, Mutschler E, Möhrke W. Activated α-alkyl-α-arylacetic acid enantiomers for stereoselective thin-layer chromatographic and high-performance liquid chromatographic determination of chiral amines. J Chromatogr 1984;307:145–53.PubMedGoogle Scholar
  15. 15.
    Shimizu R, Kakimoto T, Ishii K, Fujimoto Y, Nishi H, Tsumagari N. New derivatization reagent for the resolution of optical isomers in diltiazem hydrochloride by high-performance liquid chromatography. J Chromatogr 1986;357:119–25.CrossRefGoogle Scholar
  16. 16.
    Miller KJ, Gal J, Ames MM. High-performance liquid chromatographic resolution of enantiomers of 1-phenyl-2-aminopropanes (amphetamines) with four chiral reagents. J Chromatogr 1984;307:335–42.PubMedGoogle Scholar
  17. 17.
    Lindner W, Leitner C, Uray G. Liquid chromatographic separation of enantiomeric alkanolamines via diastereomeric tartaric acid monoesters. J Chromatogr 1984;316:605–16.CrossRefGoogle Scholar
  18. 18.
    Tamegai T, Ohmae M, Kawabe K, Tomoeda M. Separation of optical isomers as diastereomeric derivatives by high performance liquid chromatography. J Liq Chromatogr 1979;2:1229–50.Google Scholar
  19. 19.
    Gulaid AA, Houghton GW, Boobis AR. Separation of acebutolol and diacetolol diastereomers by reversedphase high-performance liquid chromatography. J Chromatogr 1985;318:393–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilson MJ, Walle T. Silica gel high-performance liquid chromatography for the simultaneous determination of propranolol and 4-hydroxypropranolol enantiomers after chiral derivatization. J Chromatogr 1984;310:424–30.PubMedGoogle Scholar
  21. 21.
    Gal J. Determination of the enantiomeric composition of chiral aminoalcohols using chiral derivatization and reversed-phase liquid chromatography. J Liq Chromatogr 1986;9:673–81.Google Scholar
  22. 22.
    Sedman AJ, Gal J. Resolution of the enantiomers of propranolol and other beta-adrenergic antagonists by high-performance liquid chromatography. J Chromatogr 1983;278:199–203.Google Scholar
  23. 23.
    Gal J, Sedman AJ.R-α-Methylbenzyl isothiocyanate, a new and convenient chiral derivatizing agent for the separation of enantiomeric amino compounds by high-performance liquid chromatography. J Chromatogr 1984;314:275–81.CrossRefGoogle Scholar
  24. 24.
    Maître J-M, Boss G, Testa B. High-performance liquid chromatographic separation of the enantiomers of anti-inflammatory 2-arylpropionates: suitability of the method forin vitro metabolic studies. J Chromatogr 1984;299:397–403.CrossRefPubMedGoogle Scholar
  25. 25.
    Hutt AJ, Fournel S, Caldwell J. Application of a radial compression column to the high-performance liquid chromatographic separation of the enantiomers of some 2-arylpropionic acids as their diastereoisomericS-(−)-1-(naphthen-1-yl)ethylamides. J Chromatogr 1986;378:409–18.PubMedGoogle Scholar
  26. 26.
    Goto J, Ito M, Katsuki S, Saito N, Nambara T. Sensitivederivatization reagents for optical resolution of carboxylic acids by high performance liquid chromatography with fluorescence detection. J Liq Chromatogr 1986;9:683–94.Google Scholar
  27. 27.
    Lee EJ, Williams KM, Graham GG, Day RO, Champion GD. Liquid chromatographic determination and plasma concentration profile of optical isomers of ibuprofen in humans. J Pharm Sci 1984;73:1542–4.PubMedGoogle Scholar
  28. 28.
    Te Koppele JM, Van der Mark EJ, Olde Boerrigter JC, et al. α-Bromoisovalerylurea as model substrate for studies on pharmacokinetics of glutathione conjugation in the rat. 1. (Bio)synthesis, analysis and identification of diastereomeric glutathione conjugates and mercapturates. J Pharmacol Exp Ther 1986;239:898–904.PubMedGoogle Scholar
  29. 29.
    Mascher H, Nitsche V, Schütz H. Separation, isolation and identification of optical isomers of 1,4-benzodiazepine glucuronides from biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr 1984;306:231–9.PubMedGoogle Scholar
  30. 30.
    Davankov VA. Resolution of racemates by ligand-exchange chromatography. In: Giddings JC, Grushka E, Cazes J, Brown PR, eds. Advances in chromatography. Vol. 18. New York: Marcel Dekker, 1980:139–95.Google Scholar
  31. 31.
    Gelber LR, Neumeyer JL. Determination of the enantiomeric purity of levodopa, methyldopa, carbidopa and tryptophan by use of chiral mobile phase high-performance liquid chromatography. J Chromatogr 1983;257:317–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Horikawa R, Sakamoto H, Tanimura T. Separation of α-hydroxy acid enantiomers by high performance liquid chromatography using copper(11)-l-amino acid eluent. J Liq Chromatogr 1986;9:537–49.Google Scholar
  33. 33.
    Broge JM, Leussing DL. Mechanism of the reversed-phase high-performance liquid chromatographic separation ofd- andl-valine using copper(11) andl-aspartyl-l-phenylalanine methyl ester. Anal Chem 1986;58:2237–41.CrossRefGoogle Scholar
  34. 34.
    Pettersson C, Schill G. Separation of enantiomers in ion-pair chromatographic systems. J Liq Chromatogr 1986;9:269–90.Google Scholar
  35. 35.
    Szepesi G, Gazdag M, Iváncsics R. Normal-phase dynamic (solvent-generated) molecular complexation chromatography using anionic ion exchangers. 11. Separation of optical isomers. J Chromatogr 1982;244:33–48.CrossRefGoogle Scholar
  36. 36.
    Lim HK, Sardessai M, Hubbard JW, Midha KK. Enantiomeric resolution ofdl-threo-methylphenidate, USP (Ritalin®), by high-performance liquid chromatography. J Chromatogr 1985;328:378–86.CrossRefGoogle Scholar
  37. 37.
    Pettersson C, Arvidsson T, Karlsson A-L, Marle I. Chromatographic resolution of enantiomers using albumin as complexing agent in the mobile phase. J Pharm Biomed Anal 1986;4:221–35.CrossRefGoogle Scholar
  38. 38.
    Hermansson J. Direct liquid chromatographic resolution of racemic drugs by means of α1-acid glycoprotein as the chiral complexing agent in the mobile phase. J Chromatogr 1984;316:537–46.CrossRefGoogle Scholar
  39. 39.
    Zukowski J, Sybilska D, Bojarski J. Application of α- and β-cyclodextrin and heptakis(2,6-di-O-methyl)-β-cyclodextrin as mobile phase components for the separation of some chiral barbiturates into enantiomers by reversed-phase high-performance liquid chromatography. J Chromatogr 1986;364:225–32.CrossRefGoogle Scholar
  40. 40.
    Däppen R, Arm H, Meyer VR. Applications and limitations of commercially available chiral stationary phases for high-performance liquid chromatography. J Chromatogr 1986;373:1–20.CrossRefGoogle Scholar
  41. 41.
    Blaschke G. Chromatographische Racemattrennung. Angew Chem 1980;92:14–25.Google Scholar
  42. 42.
    Dalgliesh CE. The optical resolution of aromatic aminoacids on paper chromatograms. J Chem Soc 1952;137:3940–2.CrossRefGoogle Scholar
  43. 43.
    Pirkle WH, Finn JM, Schreiner JL, Hamper BC. A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J Am Chem Soc 1981;103:3964–6.CrossRefGoogle Scholar
  44. 44.
    Zief M, Crane LJ, Horvath J. Selection of the mobile phase for enantiomeric resolution via chiral stationary phase columns. J Liq Chromatogr 1984;7:709–30.Google Scholar
  45. 45.
    Pirkle WH, Finn JM, Hamper BC, Schreiner J, Pribish JR. A useful and conveniently accessible chiral stationary phase for the liquid chromatographic separation of enantiomers. In: Eliel EL, Otsuka S, eds. Asymmetric reactions and processes in chemistry. Washington: American Chemical Society, 1982:245–60. (ACS symposium series. No. 185.)Google Scholar
  46. 46.
    Doyle TD, Adams WM, Fry FS, Wainer IW. The application of HPLC chiral stationary phases to stereochemical problems of pharmaceutical interest: a general method for the resolution of enantiomeric amines as β-naphthylcarbamate derivatives. J Liq Chromatogr 1986;9:455–71.Google Scholar
  47. 47.
    Pirkle WH, Hyun MH, Bank B. A rational approach to the design of highly-effective chiral stationary phases. J Chromatogr 1984;316:585–604.CrossRefGoogle Scholar
  48. 48.
    Kip J, Van Haperen P, Kraak JC.R-N-(Pentafluorobenzoyl)phenylglycine as a chiral stationary phase for the separation of enantiomers by high-performance liquid chromatography. J Chromatogr 1986;356:423–7.CrossRefGoogle Scholar
  49. 49.
    Pirkle WH, Pochapsky TC, Mahler GS, Corey DE, Reno DS, Alessi DM. Useful and easily prepared chiral stationary phases for the direct chromatographic separation of the enantiomers of a variety of derivatized amines, amino acids, alcohols and related compounds. J Org Chem 1986;51:4991–5000.CrossRefGoogle Scholar
  50. 50.
    Hara S, Dobashi A, Hondo T, Saito M, Senda M. Optical resolution of α-amino acid derivatives by carbon dioxide-supercritical fluid chromatography on the chiral stationary phase,N-formyl-valine bonded silica gel. J High Resol Chromatogr Chromatogr Commun 1986;9:249–50.CrossRefGoogle Scholar
  51. 51.
    Oi N, Nagase M, Sawada Y. High-performance liquid chromatographic separation of enantiomers onS-triazine derivatives of a tripeptide ester and a chiral amine bonded to silica gel. J Chromatogr 1984;292:427–31.CrossRefGoogle Scholar
  52. 52.
    Däppen R, Meyer VR, Arm H. Chiral covalently bonded stationary phases for the separation of enantiomeric amine derivatives by high-performance liquid chromatography. J Chomatogr 1984;295:367–76.CrossRefGoogle Scholar
  53. 53.
    Däppen R, Meyer VR, Arm H. New chiral, covalently bonded, π-donor stationary phases for high-performance liquid chromatography, based on derivatives of optically active 1-(α-naphthyl)ethylamine. J Chromatogr 1986;361:93–105.CrossRefGoogle Scholar
  54. 54.
    Rosini C, Altemura P, Pini D, Bertucci C, Zullino G, Salvadori P.Cinchona alkaloids for preparing new, easily accessible chiral stationary phases. 11. Resolution of binaphthol derivatives on silica-supported quinine. J Chromatogr 1985;348:79–87.CrossRefGoogle Scholar
  55. 55.
    Allenmark S. Enantioselective binding of small ligands to proteins and its use for direct separation of optical antipodes by isocratic liquid affinity chromatography. Chem Scrip 1982;20:5–10.Google Scholar
  56. 56.
    Allenmark S. Optical resolution by liquid chromatography on immobilized bovine serum albumin. J Liq Chromatogr 1986;9:425–42.Google Scholar
  57. 57.
    Hermansson J. Direct liquid chromatographic resolution of racemic drugs using α1-acid glycoprotein as the chiral stationary phase. J Chromatogr 1983;269:71–80.CrossRefGoogle Scholar
  58. 58.
    Schill G, Wainer IW, Barkan SA. Chiral separation of cationic drugs on an α1-acid glycoprotein bonded stationary phase. J Liq Chromatogr 1986;9:641–66.Google Scholar
  59. 59.
    Hermansson J, Eriksson M. Direct liquid chromatographic resolution of acidic drugs using a chiral α1-acid glycoprotein column (Enantiopac®). J Liq Chromatogr 1986;9:621–39.Google Scholar
  60. 60.
    Blaschke G, Markgraf H. Trennung chiralerN-Methyl-barbiturate und Phenylcyanessigester an Cellulosetriacetat. Arch Pharm 1984;317:465–71.Google Scholar
  61. 61.
    Gübitz G, Jellenz W, Schönleber D. High-performance liquid chromatographic resolution of the optical isomers ofd, l-tryptophane,d, l-5-hydroxytryptophan andd,l-DOPA on cellulose columns. J High Resol Chromatogr Chromatogr Commun 1980;3:31–2.CrossRefGoogle Scholar
  62. 62.
    Koller H, Rimböck K-H, Mannschreck A. High-pressure liquid chromatography on triacetylcellulose. Characterization of a sorbent for the separation of enantiomers. J Chromatogr 1983;282:89–94.CrossRefGoogle Scholar
  63. 63.
    Okamoto Y, Kawashima M, Yamamoto K, Hatada K. Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem Lett 1984:739–42.Google Scholar
  64. 64.
    Wainer IW, Alembik MC. Resolution of enantiomeric amides on a cellulose-based chiral stationary phase. Steric and electronic effects. J Chromatogr 1986;358:85–93.CrossRefPubMedGoogle Scholar
  65. 65.
    Schulze J, König WA. Enantiomer separation by high-performance liquid chromatography on silica gel with covalently bound monosaccharides. J Chromatogr 1986;355:165–75.CrossRefGoogle Scholar
  66. 66.
    Okamoto Y, Hatada K. Resolution of enantiomers by HPLC on optically active poly(triphenylmethyl methacrylate). J Liq Chromatogr 1986;9:369–84.Google Scholar
  67. 67.
    Gübitz G, Jellenz W, Santi W. Resolution of the optical isomers of underivatisized amino acids on chemically bonded chiral phases by ligand exchange chromatography. J Liq Chromatogr 1981;4:701–12.Google Scholar
  68. 68.
    Gübitz G. Direct separation of enantiomers by high performance ligand exchange chromatography on chemically bonded chiral phases. J Liq Chromatogr 1986;9:519–35.Google Scholar
  69. 69.
    Kicinski HG, Kettrup A. Determination of enantiomeric catecholamines by ligand-exchange chromatography using chemically modifiedl(+)-tartaric acid silica gel. Fresenius Z Anal Chem 1985;320:51–4.CrossRefGoogle Scholar
  70. 70.
    Zsadon B, Szilasi M, Décsei L, Ujházy A, Szejtli J. Variation of the selectivity in the resolution of alkaloid enantiomers on cross-linked cyclodextrin polymer stationary phases. J Chromatogr 1986;356:428–32.CrossRefGoogle Scholar
  71. 71.
    Feitsma KG, Bosman J, Drenth BFH, De Zeeuw RA. A study of the separation of enantiomers of some aromatic carboxylic acids by high-performance liquid chromatography on a β-cyclodextrin-bonded stationary phase. J Chromatogr 1985;333:59–68.CrossRefGoogle Scholar
  72. 72.
    Maguire JH. Some structural requirements for resolution of hydantoin enantiomers with a β-cyclodextrin liquid chromatography column. J Chromatogr 1987;387:453–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Hinze WL, Riehl TE, Armstrong DW, DeMond W, Alak A, Ward T. Liquid chromatographic separation of enantiomers using a chiral β-cyclodextrin-bonded stationary phase and conventional aqueous-organic mobile phases. Anal Chem 1985;57:237–42.CrossRefGoogle Scholar
  74. 74.
    Tanaka M, Okazaki J, Ikeda H, Shono T. Methylated cyclodextrin-bonded stationary phases for liquid chromatography. J Chromatogr 1986;370:293–301.CrossRefGoogle Scholar
  75. 75.
    Wulff G, Poll H-G, Minárik M. Enzyme-analogue built polymers. XIX. Racemic resolution on polymers containing chiral cavities. J Liq Chromatogr 1986;9:385–405.Google Scholar

Copyright information

© Bohn, Scheltema & Holkema 1988

Authors and Affiliations

  • Karla G. Feitsma
    • 1
  • Ben F. H. Drenth
    • 1
  1. 1.Department of Analytical Chemistry and ToxicologyState University of GroningenAW Groningenthe Netherlands

Personalised recommendations