Advertisement

Pharmaceutisch Weekblad

, Volume 14, Issue 3, pp 132–138 | Cite as

Strategies for identifying and developing new anticonvulsant drugs

  • Harvey J. Kupferberg
Recent Developments on Valproate and its Metabolites

Abstract

The identification of new anticonvulsant drugs depends on the use of different animal models of epilepsy. The models should be mechanism-independent, able to screen a large number of compounds, at limited cost and technical expertise. Primary screening models include genetic or reflex models of epilepsy and electrically and chemically induced seizures. Once active compounds have been identified, more advanced mechanistic and seizure-specific models are needed to refine the choice of a lead compound. These can be eitherin vivo orin vitro models. Models known to interact with specific receptors or the production of the putative neurotransmitters of neural excitability or inhibition are valuable in assessing possible mechanisms of action.In vitro models have evolved as important tools in correlating changes in electrical phenomena and therapeutic spectrum. The use of the hippocampal slice and the cultured neuron permits classification of anticonvulsant activity based on cellular actions of the drug. Interactions by the experimental drugs with specific subcellular fractions of the central nervous system augment information on possible mechanisms of action. The final choice of compounds for development requires synthesizing and comparing all of the pharmacodynamic information with the pharmacokinetic and toxicologic data. In the final analysis, no single animal model of epilepsy known today can assure the development of better drugs for all treatment of the epilepsies.

Keywords

Anticonvulsants Disease models, animal Drug screening Epilepsy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swinyard EA, Kupferberg HJ. Antiepileptic drugs: detection, quantification and evaluation. Fed Proc 1985;44:2629–33.PubMedGoogle Scholar
  2. 2.
    Merritt HH, Putnam TJ. A new series of anticonvulsant drugs tested by experimental animals. Arch Neurol Psychiatry 1938;39:1003–15.Google Scholar
  3. 3.
    Huot J, Radouco-Thomas S, Radouco-Thomas C. Qualitative and quantitative evaluation of experimentally induced seizures. In: Mercier J, ed. Anticonvulsant drugs. Oxford: Pergamon Press, 1973:123–85.Google Scholar
  4. 4.
    Swinyard EA, Brown WC, Goodman LS. Comparative assay of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 1952;106–319–30.Google Scholar
  5. 5.
    Fisher RS. Animal models of the epilepsies. Brain Res Rev 1989;14:245–78.CrossRefPubMedGoogle Scholar
  6. 6.
    Loscher W, Jackel R, Czuczwar SJ. Is amygdalakindled rats a model for drug-resistant partial epilepsy. Exp Neurol 1986;93:211–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Engel J, Cahan L. Potential relevance of kindling to human partial epilepsy. In: Wada JA, ed. Kindling. New York: Raven Press, 1986:37–51.Google Scholar
  8. 8.
    Coenen AML, Van Luijtelaar ELJM. The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res 1987;1:297–301.CrossRefPubMedGoogle Scholar
  9. 9.
    Snead OC III. Gamma-aminobutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988; 361–8.Google Scholar
  10. 10.
    Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit-mal like seizures. Exp Neurol 1987;96:127–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Walton NY, Treiman DM. Experimental secondarily generalized convulsive status epilepticus induced by homocysteine thiolactone. Epilepsy Res 1988;2:79–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Croucher MJ, Collins JF, Meldrum BS. Anticonvulsant action of excitatory amino acid antagonists. Science 1982;216:899–901.PubMedGoogle Scholar
  13. 13.
    Loscher W. Comparative assay of anticonvulsant and toxic potencies of sixteen GABA-mimetic drugs. Neuropharmacology 1982;21:803–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Swinyard EA. Laboratory assay of clinically effective antiepileptic drugs. J Am Pharm Assoc 1949;38:201–4.Google Scholar
  15. 15.
    Meldrum BS. Photosensitive epilepsy inPapio papio as a model for drug studies. In: Cobb WA, Duijn HV, eds. Contemporary clinical neurophysiology. Amsterdam: Elsevier Scientific Publishing Company, 1978:317–22.Google Scholar
  16. 16.
    Meldrum BS, Horton RW, Toseland PA. A primate model for testing anticonvulsant drugs. Arch Neurol 1975;32:289–94.PubMedGoogle Scholar
  17. 17.
    Chapman AG, Croucher MJ, Meldrum BS. Evaluation of anticonvulsant drugs in DBA/2 mice with soundinduced seizures. Arzneimittelforschung 1984;34: 1261–4.PubMedGoogle Scholar
  18. 18.
    Collins RL. Audiogenic seizures. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R ed. Experimental models of epilepsy. A manual for the laboratory worker. New York: Raven Press, 1972:347–72.Google Scholar
  19. 19.
    Dailey JW, Jobe PC. Anticonvulsant drugs and the genetically epilepsy prone rat. Fed Proc 1985;44:2640–44.PubMedGoogle Scholar
  20. 20.
    Laird HW, Dailey JW, Jobe PC. The genetically epilepsy prone rat. In: Jobe PC, Laird HE ed. Neurotransmitters and epilepsy. London: Humana Press, 1984.Google Scholar
  21. 21.
    Loskota WJ, Lomax P, Rich ST. The gerbil as a model for the study of the epilepsies. Epilepsia 1974;15:109–19.PubMedGoogle Scholar
  22. 22.
    Loscher W, Frey H-H. Evaluation of anticonvulsant drugs in gerbils with reflex epilepsy. Arzneimittelforschung 1984;34:1484–8.PubMedGoogle Scholar
  23. 23.
    Majkowski J, Kaplan H. Value of Mongolian gerbils in antiepileptic drug evaluation. Epilepsia 1983;24:609–15.PubMedGoogle Scholar
  24. 24.
    Johnson DD, Davis HL. Anticonvulsants in epileptic fowl. Arzneimittelforschung 1984;34:1735–57.Google Scholar
  25. 25.
    Heller AH, Dichter MA, Sidman RL. Anticonvulsant sensitivity of absence seizures in the tottering mouse. Epilepsia 1983;25:24–34.Google Scholar
  26. 26.
    Loscher W, Schwartz-Porsche D, Frey H-H, Schmidt D. Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneimittelforschung 1985;35:82–7.PubMedGoogle Scholar
  27. 27.
    Goodman LS, Grewal MS, Brown WC, Swinyard EA. Comparison of maximal seizures evoked by pentylenetetrazol (metrazol) and electroshock in mice, and their modification by anticonvulsants. J Pharmacol Exp Ther 1953;108:168–76.PubMedGoogle Scholar
  28. 28.
    Gladding GD, Kupferberg HJ, Swinyard EA. Antiepileptic drug development program. In: Frey H-H, Janz D, eds. Antiepileptic drugs. Handbook of experimental Pharmacology. Berlin: Springer-Verlag, 1985: 341–7.Google Scholar
  29. 29.
    Simon P, Larousse C, Boissier JR. Anticonvulsant effects: Criteria of extrapolation from animal to man. Flurothyl-induced seizures as an example. In: Tedeschi DH, Tedeschi RE, ed. Importance of fundamental principals in drug evaluation. New York: Raven Press, 1968:433–47.Google Scholar
  30. 30.
    Toman JEP, Swinyard EA, Goodman LS. Properties of maximal seizures and their alteration by anticonvulsant drugs and other agents. J Neurophysiol 1946;9:231–40.Google Scholar
  31. 31.
    Piredda SG, Woodhead JH, Swinyard EA. Effects of stimulus intensity on the profile of anticonvulsant activity of phenytoin, ethosuximide, and valproate. J Pharmacol Exp Ther 1985;232:741.PubMedGoogle Scholar
  32. 32.
    Naik SR, Guidotti A, Costa E. Central GABA receptor agonists: comparison of muscimol and baclofen. Neuropharmacol 1976;15:479–484.CrossRefPubMedGoogle Scholar
  33. 33.
    Loscher W. 3-Mercaptopropionic acid: convulsant properties, effects on enzymes of the gamma-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem Pharmacol 1979;28:1397–407.CrossRefPubMedGoogle Scholar
  34. 34.
    Ashton D, Wauquier A. Effects of some antiepileptic, neuroleptic and gabaminergic drugs on convulsions induced byd,l-allylglycine. Pharmacol Biochem Behav 1979;11:221–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Meldrum BS. Convulsant drugs, anticonvulsants and GABA-mediated neuronal inhibition. In: Krogsgaard-Larsen P, Scheel-Kruger J, Kofod H, ed. GABA-Neurotransmitters. Copenhagen: Munksgaard, 1979:390–405.Google Scholar
  36. 36.
    Olsen RW. The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 1981;39:261–79.CrossRefPubMedGoogle Scholar
  37. 37.
    Petersen EN. DMCM: a potent convulsant benzodiazepine receptor ligand. Eur J Pharmacol 1983;94:117–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Chweh AK, Miyahara JT, Swinyard EA, Kupferberg HJ. Correlations among minimal neurotoxicity, anticonvulsant activity and displacing potencies in tritium labeled flunitrazepam binding of benzodiazepines. Epilepsia 1984;24:668–77.Google Scholar
  39. 39.
    Czuczwar Sj, Frey H-H, Loscher W. Antagonism ofN methyl-d,l-aspartic acid induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 1985;108:273–80.CrossRefPubMedGoogle Scholar
  40. 40.
    Loscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 1988;2:145–81.CrossRefPubMedGoogle Scholar
  41. 41.
    McIntyre DC, Racine RJ. Kindling mechanisms: current progress on a experimental epilepsy model. Prog Neurobiol 1986;27:1–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Goddard GV. The kindling model of epilepsy. Trends Neurosci 1983;6:275–79.CrossRefGoogle Scholar
  43. 43.
    Racine R. Kindling: the first decade. Neurosurg 1978; 3:234–52.Google Scholar
  44. 44.
    Oliver AP, Hoffer BJ, Wyatt RJ. The hippocampal slice. A system for studying the pharmacology of seizures and for screening anticonvulsant drugs. Epilepsia 1977;18(4):543–8.PubMedGoogle Scholar
  45. 45.
    Piredda S, Yonekawa W, Whittingham TS, Kupferberg HJ. Potassium, pentylenetetrazol, and anticonvulsants in mouse hippocampal slices. Epilepsy 1985;26:167–74.Google Scholar
  46. 46.
    MacDonald RL, McLean MJ. Anticonvulsant drugs: Mechanism of action. In: Delgado-Escueta AV, Ward AA, Porter RJ, eds. Basic mechanisms of the epilepsies, molecular and cellular approaches. New York: Raven Press, 1986;713–6.Google Scholar
  47. 47.
    MacDonald RL, McLean MJ. Mechanisms of anticonvulsant drug action. Electroencephalogr Clin Neurophysiol 1987;39:200–8.Google Scholar
  48. 48.
    Hood TW, Siegfried J, Haas HL. Analysis of carbamazepine actions in hippocampal slices of the rat. Cell Mol Neurobiol 1983;3(3):213–22.CrossRefPubMedGoogle Scholar
  49. 49.
    MacDonald RL. Anticonvulsant and convulsant drug actions on vertebrate neurons in primary dissociated cell culture. In: Schwartzkroin PA, Wheal HV, eds. Electrophysiology of epilepsy. London: Academic Press, 1984:353–7.Google Scholar
  50. 50.
    MacDonald RL, McLean MJ, Skerritt JH. Anticonvulsant drug mechanisms of action. Fed Proc 1985;44: 2634–9.PubMedGoogle Scholar
  51. 51.
    Coulter DA, Huguenard JR, Prince DA. Differential effect of petit mal anticonvulsants and convulsants on thalamic neurones — GABA current blockade. Br J Pharmacol 1990;100(4):807–13.PubMedGoogle Scholar
  52. 52.
    Braestrup C, Squires R. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding. Proc Natl Acad Sci USA 1977;74:3805–9.PubMedGoogle Scholar
  53. 53.
    Enna SJ, Snyder SH. Properties of gamma-aminobutyric acid (GABA) receptor bindings in rat brain synaptic membrane fraction. Mol Pharmacol 1975;100:81–97.Google Scholar
  54. 54.
    Phillis JW, Wu PH, Bender AS. Inhibition of adenosine uptake into rat brain synaptosomes by the benzodiazepines. Gen Pharmacol 1981;12:67–70.PubMedGoogle Scholar
  55. 55.
    Phillis JW, O'Regan MH. The role of adenosine in the central actions of the benzodiazepines. Prog Neuropsychopharmacol. Biol Psychiatry 1988;12:389–404.Google Scholar
  56. 56.
    De Lorenzo RJ. Phenytoin. Mechanisms of action. In: Levy R, Mattson R, Meldrum BS, Penry JK, Dreifuss FE, eds. Antiepileptic drugs. New York: Raven Press, 1989:143–58.Google Scholar
  57. 57.
    Perucca E, Richens A. Antiepileptic drug interactions. In: Frey H-H, Janz D, eds. Antiepileptic drugs. Berlin: Springer-Verlag, 1985:831–55.Google Scholar
  58. 58.
    Buhles WC, Wallach MB, Chaplin MD, Treiman DM. Nafimidone. In: Meldrum BS, Porter RJ, eds. New anticonvulsant drugs. London: Libbey, 1986:203–14.Google Scholar
  59. 59.
    Kapetanovic IM, Kupferberg HJ. Nafimidone, an imidazole anticonvulsant, and its metabolite as potent inhibitors of microsomal metabolism of phenytoin and carbamazepine. Drug Metab Dispos 1984;12:560–4.PubMedGoogle Scholar
  60. 60.
    Testa R, Bertin D. Denzimol. In: Meldrum BS, Porter RJ, eds. New anticonvulsant drugs. London: Libbey, 1986:85–102.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1992

Authors and Affiliations

  • Harvey J. Kupferberg
    • 1
  1. 1.Preclinical Pharmacology Section Epilepsy Branch, National Institute of Neurological Diseases and StrokeNational Institute of HealthBethesdaUSA

Personalised recommendations